以下是一个简单的Python函数demo,使用Azure Data Lake Storage query acceleration筛选blob数据:

from azure.identity import DefaultAzureCredential
from azure.storage.filedatalake import DataLakeServiceClient

def filter_blob_data(account_url, file_system_name, directory_path, query_expression):
    # Create a DataLakeServiceClient using DefaultAzureCredential
    credential = DefaultAzureCredential()
    service_client = DataLakeServiceClient(account_url=account_url, credential=credential)

    # Get a reference to the file system
    file_system_client = service_client.get_file_system_client(file_system_name)

    # Get a reference to the directory
    directory_client = file_system_client.get_directory_client(directory_path)

    # Use Azure Data Lake Storage query acceleration to filter data
    query_client = directory_client.query(query_expression)

    # Iterate over the results and do something with them
    for result in query_client:
        print(result)

# Example usage
account_url = "https://<your-account-name>.dfs.core.windows.net"
file_system_name = "<your-file-system-name>"
directory_path = "/<your-directory-path>"
query_expression = "SELECT * FROM <your-file-name> WHERE <your-query-condition>"

filter_blob_data(account_url, file_system_name, directory_path, query_expression)

在调用函数时,你需要替换掉<your-account-name><your-file-system-name><your-directory-path><your-file-name><your-query-condition>,以便正确指定你要筛选的blob数据

利用filter data by use Azure Data Lake Storage query acceleration实现筛选blob数据帮我写一个Python函数demo

原文地址: https://www.cveoy.top/t/topic/hsKL 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录