请使用pytorch 编写LSTM时间序列预测代码包含激活函数lru的配置
以下是一个使用PyTorch编写的LSTM时间序列预测代码,其中包含了使用lru激活函数的配置。
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# Set random seed for reproducibility
torch.manual_seed(0)
# Define LSTM model
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.fc = nn.Linear(hidden_size, output_size)
self.activation = nn.LeakyReLU()
def forward(self, x):
h0 = torch.zeros(1, x.size(1), self.hidden_size)
c0 = torch.zeros(1, x.size(1), self.hidden_size)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[-1])
out = self.activation(out)
return out
# Generate sample data
data = np.sin(np.arange(1000)*0.1) + np.random.normal(0, 0.1, 1000)
# Define input and target sequences
seq_length = 20
input_seq = []
target_seq = []
for i in range(len(data)-seq_length):
input_seq.append(data[i:i+seq_length])
target_seq.append(data[i+seq_length])
# Convert input and target sequences to PyTorch tensors
input_seq = torch.Tensor(input_seq).unsqueeze(2)
target_seq = torch.Tensor(target_seq).unsqueeze(1)
# Split data into training and validation sets
train_input = input_seq[:800]
train_target = target_seq[:800]
val_input = input_seq[800:]
val_target = target_seq[800:]
# Define model, loss function, and optimizer
model = LSTM(1, 16, 1)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
# Train model
num_epochs = 1000
for epoch in range(num_epochs):
optimizer.zero_grad()
output = model(train_input)
loss = criterion(output, train_target)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# Evaluate model on validation set
model.eval()
with torch.no_grad():
val_output = model(val_input)
val_loss = criterion(val_output, val_target)
print('Validation Loss: {:.4f}'.format(val_loss.item()))
# Plot predicted vs actual values
import matplotlib.pyplot as plt
plt.plot(val_target.numpy(), label='Actual')
plt.plot(val_output.numpy(), label='Predicted')
plt.legend()
plt.show()
在这个代码中,我们使用了LeakyReLU激活函数,它是lru函数的一种变体。我们在LSTM类的构造函数中定义了这个激活函数,并在forward方法中将它应用到全连接层输出的结果上。
在训练过程中,我们使用均方误差损失函数和Adam优化器来训练模型。我们还将数据集分成了训练集和验证集,以帮助我们评估模型的性能。
最后,我们将模型应用于验证集,并将其预测结果与实际结果进行比较。我们使用matplotlib库绘制了预测值和实际值之间的比较图表
原文地址: https://www.cveoy.top/t/topic/hjQa 著作权归作者所有。请勿转载和采集!