curve_brute_force = nppolyfitN times_brute_force 20curve_backtrack = nppolyfitN times_backtrack 20curve_branch_bound = nppolyfitN times_branch_bound 20 #使用polyfit最小二乘法进行多项式拟合smooth_N = nplinsp
- The code is fitting a polynomial curve to the data points using the numpy function
polyfit. curve_brute_force,curve_backtrack, andcurve_branch_boundare the coefficients of the polynomial curve that best fits the data points for the respective algorithms.smooth_Nis an array of 100 evenly spaced values between the minimum and maximum values ofN.smooth_times_brute_force,smooth_times_backtrack, andsmooth_times_branch_boundare the values of the polynomial curve evaluated at the points insmooth_N.- The code then plots the polynomial curves for each algorithm using
plt.plot. - The x-axis is labeled as 'N' and the y-axis is labeled as 'Time (s)' using
plt.xlabelandplt.ylabel. - The legend is displayed using
plt.legend. - The plot is displayed using
plt.show.
原文地址: https://www.cveoy.top/t/topic/hPtn 著作权归作者所有。请勿转载和采集!