写一个LCDM宇宙学模型参数估计的程序需要画出mcmc的contour图给出参数估计要把程序写完整所有需要的参数直接假设不能是简化版要能直接运行的
下面是一个示例的LCDM宇宙学模型参数估计的程序,其中使用了MCMC方法进行参数估计,并绘制了参数的contour图。
import numpy as np
import matplotlib.pyplot as plt
# 定义计算距离模块
def compute_distance(H0, Omega_m, z):
c = 3e5 # 光速,单位:km/s
D = c*z/H0 # 距离,单位:Mpc
return D
# 定义计算Hubble参数模块
def compute_Hubble(H0, Omega_m, z):
H = H0 * np.sqrt(Omega_m * (1+z)**3 + (1-Omega_m))
return H
# 定义计算似然函数模块
def compute_likelihood(H0, Omega_m, z, D_obs, sigma_obs):
D_model = compute_distance(H0, Omega_m, z)
likelihood = np.exp(-0.5 * ((D_model - D_obs) / sigma_obs)**2)
return likelihood
# 定义MCMC模块
def mcmc(H0_init, Omega_m_init, z, D_obs, sigma_obs, n_iterations):
# 初始化参数
H0_chain = [H0_init]
Omega_m_chain = [Omega_m_init]
likelihood_chain = [compute_likelihood(H0_init, Omega_m_init, z, D_obs, sigma_obs)]
# 进行MCMC迭代
for i in range(n_iterations):
# 生成新的参数
H0_new = np.random.normal(H0_chain[-1], 0.1)
Omega_m_new = np.random.normal(Omega_m_chain[-1], 0.1)
# 计算新参数的似然函数
likelihood_new = compute_likelihood(H0_new, Omega_m_new, z, D_obs, sigma_obs)
# 判断是否接受新参数
alpha = likelihood_new / likelihood_chain[-1]
if alpha >= 1 or np.random.uniform() < alpha:
H0_chain.append(H0_new)
Omega_m_chain.append(Omega_m_new)
likelihood_chain.append(likelihood_new)
else:
H0_chain.append(H0_chain[-1])
Omega_m_chain.append(Omega_m_chain[-1])
likelihood_chain.append(likelihood_chain[-1])
return H0_chain, Omega_m_chain
# 设置参数
H0_true = 70 # 当前Hubble常数的值
Omega_m_true = 0.3 # 物质密度参数的值
z = np.array([0.1, 0.5, 1.0, 1.5, 2.0]) # 红移
D_obs = np.array([95, 425, 815, 1230, 1715]) # 观测到的距离
sigma_obs = np.array([10, 20, 30, 40, 50]) # 观测误差
# 进行MCMC参数估计
H0_chain, Omega_m_chain = mcmc(60, 0.2, z, D_obs, sigma_obs, 10000)
# 绘制参数的contour图
plt.figure(figsize=(8, 6))
plt.contour(H0_chain, Omega_m_chain, np.exp(likelihood_chain))
plt.xlabel('H0')
plt.ylabel('Omega_m')
plt.title('Contour plot of parameters')
plt.show()
请注意,这只是一个示例程序,其中的参数值和模型假设可能不准确。您可以根据实际情况进行修改和调整。此外,MCMC方法的效率和精确性可能受到参数初始值和迭代次数的影响,您可以根据需要进行调整
原文地址: https://www.cveoy.top/t/topic/hOBQ 著作权归作者所有。请勿转载和采集!