In this model, there are two convolutional layers (Conv1 and Conv2) followed by two pooling layers (Pool1 and Pool2). The kernel size, stride, and padding for each layer are as follows:

Conv1:

  • Kernel size: 200*3
  • Stride: 50*1
  • Padding: 1
  • Input size: 110,00012

Pool1:

  • Kernel size: 2*2
  • Stride: 2*2
  • Padding: 1
  • Input size: 519712

Conv2:

  • Kernel size: 20*2
  • Stride: 4*1
  • Padding: 1
  • Input size: 5997

Pool2:

  • Kernel size: 2*2
  • Stride: 2*2
  • Padding: 0
  • Input size: 10218

After the pooling layers, the data is flattened into a 1-dimensional vector with dimensions 10104.

Finally, there is a linear classifier layer with input size 400 and output size 1*6

Layers Kernel sizeStridePadding Input size Activation Conv1 20035011 11000012 Relu Pool1 22221 519712 Conv2 202411 5997 Relu Pool2 22220 10218 Flatten 10104 Linear Classifier16 400

原文地址: https://www.cveoy.top/t/topic/hL5X 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录