基于pcl库使用kruskal最小生成树算法将点云ply文件进行处理后连接文件内的所有点并可视化的c++代码
以下是使用PCL库实现Kruskal最小生成树算法并可视化点云PLY文件的C++代码示例:
#include <iostream>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/ply_io.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/moment_of_inertia_estimation.h>
#include <pcl/common/centroid.h>
#include <pcl/common/common.h>
// Define a structure to represent an edge
struct Edge
{
int src, dest;
float weight;
};
// Define a structure to represent a subset for union-find
struct Subset
{
int parent;
int rank;
};
// Find set of an element i (uses path compression technique)
int find(Subset subsets[], int i)
{
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// Union of two sets of x and y (uses union by rank)
void Union(Subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// Comparison function used to sort edges in non-decreasing order by weight
bool compareEdges(const Edge &a, const Edge &b)
{
return a.weight < b.weight;
}
// Function to construct MST using Kruskal's algorithm
void KruskalMST(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr output)
{
int numVertices = cloud->size();
int numEdges = numVertices * (numVertices - 1) / 2;
// Create a vector to store all edges in the graph
std::vector<Edge> edges(numEdges);
int edgeIndex = 0;
for (int i = 0; i < numVertices; i++)
{
for (int j = i + 1; j < numVertices; j++)
{
Edge e;
e.src = i;
e.dest = j;
e.weight = pcl::euclideanDistance(cloud->points[i], cloud->points[j]);
edges[edgeIndex++] = e;
}
}
// Sort edges in non-decreasing order by weight
std::sort(edges.begin(), edges.end(), compareEdges);
// Allocate memory for creating V subsets
Subset *subsets = new Subset[numVertices * sizeof(Subset)];
// Create V subsets with single elements
for (int v = 0; v < numVertices; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
// Initialize MST to store edges of minimum spanning tree
std::vector<Edge> mst(numVertices - 1);
// Keep track of edges included in MST
int mstIndex = 0;
// Index variable used to pick next edge
int edgeCount = 0;
// Loop until all edges are included in MST or maximum spanning tree is formed
while (mstIndex < numVertices - 1)
{
// Pick the smallest edge
Edge nextEdge = edges[edgeCount++];
int x = find(subsets, nextEdge.src);
int y = find(subsets, nextEdge.dest);
// If including this edge doesn't cause cycle, include it in MST
if (x != y)
{
mst[mstIndex++] = nextEdge;
Union(subsets, x, y);
}
}
// Free allocated memory
delete[] subsets;
// Create output point cloud
output->resize(numVertices);
for (int i = 0; i < numVertices; i++)
{
output->points[i] = cloud->points[i];
}
// Add edges of MST to output point cloud
for (int i = 0; i < mstIndex; i++)
{
int src = mst[i].src;
int dest = mst[i].dest;
output->points[src].x = cloud->points[src].x;
output->points[src].y = cloud->points[src].y;
output->points[src].z = cloud->points[src].z;
output->points[dest].x = cloud->points[dest].x;
output->points[dest].y = cloud->points[dest].y;
output->points[dest].z = cloud->points[dest].z;
}
}
int main()
{
// Load input point cloud from PLY file
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr output(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PLYReader reader;
reader.read("input.ply", *cloud);
// Apply Kruskal's algorithm to construct MST
KruskalMST(cloud, output);
// Visualize the original point cloud and the MST
pcl::visualization::CloudViewer viewer("Point Cloud Viewer");
viewer.showCloud(cloud, "Original Point Cloud");
viewer.showCloud(output, "Minimum Spanning Tree");
while (!viewer.wasStopped())
{
}
return 0;
}
请注意,此示例仅处理具有PointXYZ类型的点云PLY文件。如果您的PLY文件中包含其他类型的点云数据,请相应地修改代码。此外,您需要将PLY文件的名称更改为实际的文件名
原文地址: https://www.cveoy.top/t/topic/hDOS 著作权归作者所有。请勿转载和采集!