使用kruskal最小生成树算法将点云ply文件进行处理后连接文件内的所有点并可视化的c++代码
以下是使用Kruskal最小生成树算法处理点云PLY文件并进行可视化的C++代码示例:
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
struct Edge {
int src, dest;
double weight;
};
struct Point {
double x, y, z;
};
struct Cluster {
std::vector<int> points;
};
class DisjointSet {
private:
std::vector<int> parent, rank;
public:
DisjointSet(int n) {
parent.resize(n);
rank.resize(n);
for (int i = 0; i < n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
int find(int i) {
if (i != parent[i])
parent[i] = find(parent[i]);
return parent[i];
}
void unionSets(int x, int y) {
int xRoot = find(x);
int yRoot = find(y);
if (rank[xRoot] < rank[yRoot])
parent[xRoot] = yRoot;
else if (rank[xRoot] > rank[yRoot])
parent[yRoot] = xRoot;
else {
parent[yRoot] = xRoot;
rank[xRoot]++;
}
}
};
bool compareEdges(const Edge& a, const Edge& b) {
return a.weight < b.weight;
}
std::vector<Edge> kruskalMST(std::vector<Point>& points, std::vector<Edge>& edges) {
std::vector<Edge> result;
DisjointSet ds(points.size());
std::sort(edges.begin(), edges.end(), compareEdges);
for (const auto& edge : edges) {
int srcRoot = ds.find(edge.src);
int destRoot = ds.find(edge.dest);
if (srcRoot != destRoot) {
result.push_back(edge);
ds.unionSets(srcRoot, destRoot);
}
}
return result;
}
void visualizePointCloud(std::vector<Point>& points, std::vector<Edge>& mst) {
std::ofstream output("output.ply");
output << "ply\n";
output << "format ascii 1.0\n";
output << "element vertex " << points.size() << "\n";
output << "property float x\n";
output << "property float y\n";
output << "property float z\n";
output << "element edge " << mst.size() << "\n";
output << "property int vertex1\n";
output << "property int vertex2\n";
output << "end_header\n";
for (const auto& point : points) {
output << point.x << " " << point.y << " " << point.z << "\n";
}
for (const auto& edge : mst) {
output << edge.src << " " << edge.dest << "\n";
}
output.close();
}
int main() {
std::ifstream input("input.ply");
std::vector<Point> points;
std::vector<Edge> edges;
std::string line;
int numPoints, numFaces;
bool isData = false;
while (std::getline(input, line)) {
if (isData) {
std::istringstream iss(line);
Point point;
iss >> point.x >> point.y >> point.z;
points.push_back(point);
}
if (line.find("element vertex") != std::string::npos) {
std::istringstream iss(line);
std::string vertexStr;
iss >> vertexStr >> numPoints;
}
if (line.find("element face") != std::string::npos) {
std::istringstream iss(line);
std::string faceStr;
iss >> faceStr >> numFaces;
}
if (line.find("end_header") != std::string::npos) {
isData = true;
}
}
for (int i = 0; i < numPoints; i++) {
for (int j = i + 1; j < numPoints; j++) {
Edge edge;
edge.src = i;
edge.dest = j;
edge.weight = std::sqrt(std::pow(points[i].x - points[j].x, 2) + std::pow(points[i].y - points[j].y, 2) + std::pow(points[i].z - points[j].z, 2));
edges.push_back(edge);
}
}
std::vector<Edge> mst = kruskalMST(points, edges);
visualizePointCloud(points, mst);
return 0;
}
请注意,此代码假设PLY文件的点云数据是以ASCII格式存储的,并且在每个点的行中按顺序指定x、y和z坐标。如果PLY文件使用不同的格式,请相应地调整代码。此外,代码还假设输入文件名为“input.ply”,并将最小生成树的可视化结果写入名为“output.ply”的输出文件中。您可以根据需要对文件名和路径进行更改
原文地址: https://www.cveoy.top/t/topic/hDOM 著作权归作者所有。请勿转载和采集!