利用OpenMP并行化傅里叶变换 用两种并行化方法实现代码
下面是使用OpenMP并行化傅里叶变换的两种方法的示例代码:
方法一:使用数据并行化
#include <iostream>
#include <cmath>
#include <complex>
#include <omp.h>
void parallel_fft(std::complex<double>* data, int size) {
if (size <= 1) {
return;
}
std::complex<double>* even = new std::complex<double>[size/2];
std::complex<double>* odd = new std::complex<double>[size/2];
// Divide the data into even and odd indices
#pragma omp parallel for
for (int i = 0; i < size/2; i++) {
even[i] = data[2*i];
odd[i] = data[2*i + 1];
}
// Perform FFT on even and odd indices recursively
parallel_fft(even, size/2);
parallel_fft(odd, size/2);
// Combine the results of even and odd indices
#pragma omp parallel for
for (int k = 0; k < size/2; k++) {
std::complex<double> t = std::polar(1.0, -2*M_PI*k/size) * odd[k];
data[k] = even[k] + t;
data[k + size/2] = even[k] - t;
}
delete[] even;
delete[] odd;
}
int main() {
const int size = 8;
std::complex<double> data[size] = {1, 2, 3, 4, 5, 6, 7, 8};
parallel_fft(data, size);
for (int i = 0; i < size; i++) {
std::cout << data[i] << " ";
}
std::cout << std::endl;
return 0;
}
方法二:使用任务并行化
#include <iostream>
#include <cmath>
#include <complex>
#include <omp.h>
void parallel_fft(std::complex<double>* data, int size) {
if (size <= 1) {
return;
}
std::complex<double>* even = new std::complex<double>[size/2];
std::complex<double>* odd = new std::complex<double>[size/2];
// Divide the data into even and odd indices
#pragma omp parallel sections
{
#pragma omp section
{
for (int i = 0; i < size/2; i++) {
even[i] = data[2*i];
}
}
#pragma omp section
{
for (int i = 0; i < size/2; i++) {
odd[i] = data[2*i + 1];
}
}
}
// Perform FFT on even and odd indices recursively
#pragma omp parallel sections
{
#pragma omp section
{
parallel_fft(even, size/2);
}
#pragma omp section
{
parallel_fft(odd, size/2);
}
}
// Combine the results of even and odd indices
#pragma omp parallel for
for (int k = 0; k < size/2; k++) {
std::complex<double> t = std::polar(1.0, -2*M_PI*k/size) * odd[k];
data[k] = even[k] + t;
data[k + size/2] = even[k] - t;
}
delete[] even;
delete[] odd;
}
int main() {
const int size = 8;
std::complex<double> data[size] = {1, 2, 3, 4, 5, 6, 7, 8};
parallel_fft(data, size);
for (int i = 0; i < size; i++) {
std::cout << data[i] << " ";
}
std::cout << std::endl;
return 0;
}
这两种方法都使用递归算法来实现傅里叶变换,并通过OpenMP的并行化特性来加速计算。方法一使用数据并行化,将数据的操作分配给不同的线程并行执行。方法二使用任务并行化,将递归过程中的不同任务分配给不同的线程并行执行。两种方法的具体效果取决于实际的硬件和数据规模
原文地址: https://www.cveoy.top/t/topic/h8Gi 著作权归作者所有。请勿转载和采集!