According to the weight matrix W, the transition matrix T can be obtained. The transition probability t_ij between any two nodes can be represented as: t_ij = w_ij / (∑_(k=1)^(L+U)▒w_kj) where L represents the number of labeled samples and U represents the number of unlabeled samples. Each node adds up the transition probabilities propagated by neighboring nodes according to their weights and updates its probability distribution to obtain a new label.

翻译根据权重矩阵W得到转移矩阵T任意两节点之间的转移概率t_ij可以表示为:t_ij=w_ij∑_k=1^L+U▒w_kj 其中 代表有标签样本数量 代表无标签样本数量。每个节点将周围节点传播的转移概率按权重相加并更新到自己的概率分布得到新的标签。

原文地址: https://www.cveoy.top/t/topic/h7BH 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录