对一个数据集中的信息进行K匿名代码如何实现
K匿名是一种隐私保护技术,其目的是在保持数据集中的数据可用性的同时,保护数据中的个人身份信息。下面是一些实现K匿名的代码示例:
- 使用Python的pandas库实现K匿名:
import pandas as pd
# 读取数据集
df = pd.read_csv('data.csv')
# 对数据集进行K匿名处理
k = 5
cols_to_keep = ['age', 'gender', 'zip_code']
cols_to_anonymize = ['occupation', 'salary']
df_anon = df.groupby(cols_to_keep)[cols_to_anonymize].transform(lambda x: x.sample(min(len(x), k)))
df_anon[cols_to_anonymize] = df_anon[cols_to_anonymize].apply(lambda x: x.mode().iloc[0], axis=1)
# 将处理后的数据集保存到文件
df_anon.to_csv('data_anon.csv', index=False)
在上述代码中,我们首先使用pandas库读取数据集,然后指定需要保留的列和需要进行K匿名处理的列。接着,我们使用groupby函数对数据集进行分组,并在每个组中随机选择不超过k个样本,最后对需要匿名化的列进行众数处理。最后,我们将处理后的数据集保存到文件中。
- 使用Java的Apache Hadoop框架实现K匿名:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class KAnonymity {
public static class KAnonMapper extends Mapper<Object, Text, Text, Text> {
private Text outKey = new Text();
private Text outValue = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String[] tokens = value.toString().split(",");
String age = tokens[0];
String gender = tokens[1];
String zipCode = tokens[2];
String occupation = tokens[3];
String salary = tokens[4];
outKey.set(age + "," + gender + "," + zipCode);
outValue.set(occupation + "," + salary);
context.write(outKey, outValue);
}
}
public static class KAnonReducer extends Reducer<Text, Text, Text, Text> {
private Text outKey = new Text();
private Text outValue = new Text();
@Override
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
List<String> occupations = new ArrayList<>();
List<String> salaries = new ArrayList<>();
for (Text value : values) {
String[] tokens = value.toString().split(",");
occupations.add(tokens[0]);
salaries.add(tokens[1]);
}
int k = 5;
Collections.shuffle(occupations);
List<String> anonOccupations = occupations.subList(0, Math.min(k, occupations.size()));
String anonOccupation = Collections.max(anonOccupations, (o1, o2) -> Collections.frequency(anonOccupations,o1) - Collections.frequency(anonOccupations,o2));
Collections.shuffle(salaries);
List<String> anonSalaries = salaries.subList(0, Math.min(k, salaries.size()));
String anonSalary = Collections.max(anonSalaries, (s1, s2) -> Collections.frequency(anonSalaries,s1) - Collections.frequency(anonSalaries,s2));
outKey.set(key.toString());
outValue.set(anonOccupation + "," + anonSalary);
context.write(outKey, outValue);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "k-anonymity");
job.setJarByClass(KAnonymity.class);
job.setMapperClass(KAnonMapper.class);
job.setReducerClass(KAnonReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
FileSystem.get(conf).delete(new Path(args[1]), true);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
在上述代码中,我们首先定义了一个Mapper和一个Reducer,分别用于将数据集中的每个记录映射为一个键值对,以及对每个键值对进行K匿名处理。在Mapper中,我们将数据集中的每个记录按照“年龄、性别、邮编”作为键,将“职业、薪水”作为值进行映射。在Reducer中,我们先将每个键对应的值收集到一个列表中,然后对“职业”和“薪水”分别进行随机打乱和匿名化处理,最后将匿名化后的结果作为值输出。
最后,我们使用Apache Hadoop框架将Mapper和Reducer打包成一个可执行的Jar文件,并将其提交到Hadoop集群中运行即可
原文地址: https://www.cveoy.top/t/topic/g5mk 著作权归作者所有。请勿转载和采集!