0/1背包问题求解算法性能比较:蛮力法,回溯法和分支限界法
import random
import time
import matplotlib.pyplot as plt
import numpy as np
# 生成随机的物品重量和价值
def generate_items(n):
weights = [random.randint(1, 10) for _ in range(n)]
values = [random.randint(10, 50) for _ in range(n)]
return weights, values
# 蛮力法求解0/1背包问题
def brute_force_knapsack(weights, values, capacity):
n = len(weights)
max_value = 0
for i in range(2 ** n): # 遍历所有可能的物品组合
current_weight = 0
current_value = 0
for j in range(n):
if (i >> j) & 1: # 判断第j个物品是否在当前组合中
current_weight += weights[j]
current_value += values[j]
if current_weight <= capacity and current_value > max_value:
max_value = current_value
return max_value
# 回溯法求解0/1背包问题
def backtrack_knapsack(weights, values, capacity):
def backtrack(i, current_weight, current_value):
nonlocal max_value
if current_weight > capacity:
return
if current_value > max_value:
max_value = current_value
if i == n:
return
backtrack(i + 1, current_weight, current_value)
backtrack(i + 1, current_weight + weights[i], current_value + values[i])
n = len(weights)
max_value = 0
backtrack(0, 0, 0)
return max_value
# 分支限界法求解0/1背包问题
def branch_bound_knapsack(weights, values, capacity):
class Node:
def __init__(self, level, weight, value, bound):
self.level = level
self.weight = weight
self.value = value
self.bound = bound
def bound(node):
if node.weight >= capacity:
return 0
bound = node.value
j = node.level + 1
total_weight = node.weight
while j < n and total_weight + weights[j] <= capacity:
total_weight += weights[j]
bound += values[j]
j += 1
if j < n:
bound += (capacity - total_weight) * values[j] / weights[j]
return bound
n = len(weights)
max_value = 0
Q = []
root = Node(-1, 0, 0, 0)
Q.append(root)
while Q:
node = Q.pop(0)
if node.level == n - 1:
continue
left = Node(node.level + 1, node.weight, node.value, 0)
left.bound = bound(left)
if left.bound > max_value:
Q.append(left)
right = Node(node.level + 1, node.weight + weights[node.level + 1], node.value + values[node.level + 1], 0)
right.bound = bound(right)
if right.weight <= capacity and right.value > max_value:
max_value = right.value
if right.bound > max_value:
Q.append(right)
return max_value
# 测试程序
N = [4, 8, 16, 24]
times_brute_force = []
times_backtrack = []
times_branch_bound = []
for n in N:
weights, values = generate_items(n)
capacity = sum(weights) // 2
start_time = time.time()
brute_force_knapsack(weights, values, capacity)
end_time = time.time()
times_brute_force.append(end_time - start_time)
start_time = time.time()
backtrack_knapsack(weights, values, capacity)
end_time = time.time()
times_backtrack.append(end_time - start_time)
start_time = time.time()
branch_bound_knapsack(weights, values, capacity)
end_time = time.time()
times_branch_bound.append(end_time - start_time)
# Fit a polynomial curve to the data points
curve_brute_force = np.polyfit(N, times_brute_force, 10)
curve_backtrack = np.polyfit(N, times_backtrack, 10)
curve_branch_bound = np.polyfit(N, times_branch_bound, 10)
# Generate a smooth curve using the fitted polynomial coefficients
smooth_N = np.linspace(min(N), max(N), 100)
smooth_times_brute_force = np.polyval(curve_brute_force, smooth_N)
smooth_times_backtrack = np.polyval(curve_backtrack, smooth_N)
smooth_times_branch_bound = np.polyval(curve_branch_bound, smooth_N)
# Plot the curves
plt.plot(smooth_N, smooth_times_brute_force, label='Brute Force (Curve)')
plt.plot(smooth_N, smooth_times_backtrack, label='Backtrack (Curve)')
plt.plot(smooth_N, smooth_times_branch_bound, label='Branch and Bound (Curve)')
plt.xlabel('N')
plt.ylabel('Time (s)')
plt.legend()
plt.show()
原文地址: https://www.cveoy.top/t/topic/fzV5 著作权归作者所有。请勿转载和采集!