编写能够在jupyterlab平台上运行的完整Python代码利用深度学习模型实现电影评论的情感分析。已知有训练集traincsv测试集testcsv两者各有25000条数据 ;label为评论的情感标签取值为1和0分别为正面情感和负面情感;review为电影评论文本;id为测试电影评论的id。要求预测review电影评论的好坏并将预测结果转换为csv文件输出文件和测试文件中的id保持一致要求预测
首先,需要安装必要的Python库,包括numpy、pandas、tensorflow和keras等。可以使用以下代码:
!pip install numpy pandas tensorflow keras
然后,读取训练集和测试集数据:
import pandas as pd
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
接下来,对文本数据进行预处理。首先,需要去除文本中的标点符号和数字:
import re
def preprocess_text(text):
# 去除标点符号和数字
text = re.sub('[^a-zA-Z]', ' ', text)
text = re.sub('\s+', ' ', text)
return text.strip().lower()
train_data['review'] = train_data['review'].apply(preprocess_text)
test_data['review'] = test_data['review'].apply(preprocess_text)
然后,将文本转换为数字向量。可以使用词袋模型或者词嵌入模型。这里使用词嵌入模型,具体来说,使用预训练的GloVe词向量。首先,需要下载GloVe词向量:
!wget https://nlp.stanford.edu/data/glove.6B.zip
!unzip glove.6B.zip
然后,将GloVe词向量加载到内存中:
import numpy as np
word_index = {}
embedding_matrix = np.zeros((len(word_index) + 1, 100))
with open('glove.6B.100d.txt', 'r', encoding='utf-8') as f:
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
word_index[word] = len(word_index) + 1
embedding_matrix[len(word_index)] = coefs
接下来,将文本转换为数字向量。具体来说,将每个单词替换为它在GloVe词向量中的索引:
def text_to_sequence(text):
sequence = []
for word in text.split():
if word in word_index:
sequence.append(word_index[word])
return sequence
train_data['sequence'] = train_data['review'].apply(text_to_sequence)
test_data['sequence'] = test_data['review'].apply(text_to_sequence)
接下来,对序列进行填充和截断。具体来说,将每个序列填充为固定长度,超过长度的部分进行截断:
from keras.preprocessing.sequence import pad_sequences
max_length = 100
train_data['padded_sequence'] = pad_sequences(train_data['sequence'], maxlen=max_length)
test_data['padded_sequence'] = pad_sequences(test_data['sequence'], maxlen=max_length)
然后,定义深度学习模型。具体来说,使用卷积神经网络:
from keras.models import Sequential
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense
model = Sequential()
model.add(Embedding(len(word_index) + 1, 100, weights=[embedding_matrix], input_length=max_length, trainable=False))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
然后,训练模型:
x_train = np.array(train_data['padded_sequence'].tolist())
y_train = np.array(train_data['label'])
model.fit(x_train, y_train, epochs=10, batch_size=128)
最后,使用训练好的模型对测试集进行预测,并将预测结果保存为csv文件:
x_test = np.array(test_data['padded_sequence'].tolist())
y_pred = model.predict(x_test)
y_pred = (y_pred > 0.5).astype(int)
output_df = pd.DataFrame({'id': test_data['id'], 'label': y_pred})
output_df.to_csv('output.csv', index=False)
完整代码如下:
!pip install numpy pandas tensorflow keras
import pandas as pd
import re
import numpy as np
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
def preprocess_text(text):
# 去除标点符号和数字
text = re.sub('[^a-zA-Z]', ' ', text)
text = re.sub('\s+', ' ', text)
return text.strip().lower()
train_data['review'] = train_data['review'].apply(preprocess_text)
test_data['review'] = test_data['review'].apply(preprocess_text)
word_index = {}
embedding_matrix = np.zeros((len(word_index) + 1, 100))
with open('glove.6B.100d.txt', 'r', encoding='utf-8') as f:
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
word_index[word] = len(word_index) + 1
embedding_matrix[len(word_index)] = coefs
def text_to_sequence(text):
sequence = []
for word in text.split():
if word in word_index:
sequence.append(word_index[word])
return sequence
train_data['sequence'] = train_data['review'].apply(text_to_sequence)
test_data['sequence'] = test_data['review'].apply(text_to_sequence)
max_length = 100
train_data['padded_sequence'] = pad_sequences(train_data['sequence'], maxlen=max_length)
test_data['padded_sequence'] = pad_sequences(test_data['sequence'], maxlen=max_length)
model = Sequential()
model.add(Embedding(len(word_index) + 1, 100, weights=[embedding_matrix], input_length=max_length, trainable=False))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
x_train = np.array(train_data['padded_sequence'].tolist())
y_train = np.array(train_data['label'])
model.fit(x_train, y_train, epochs=10, batch_size=128)
x_test = np.array(test_data['padded_sequence'].tolist())
y_pred = model.predict(x_test)
y_pred = (y_pred > 0.5).astype(int)
output_df = pd.DataFrame({'id': test_data['id'], 'label': y_pred})
output_df.to_csv('output.csv', index=False)
``
原文地址: https://www.cveoy.top/t/topic/fxIG 著作权归作者所有。请勿转载和采集!