贪心算法与动态规划算法在活动选择问题中的比较
import random
import time
import matplotlib.pyplot as plt
def generate_activities(n):
'生成n个活动,每个活动的开始时间和结束时间随机生成。'
activities = []
for i in range(n):
start_time = random.randint(0, 100)
end_time = start_time + random.randint(1, 10)
activities.append((start_time, end_time))
return activities
def greedy_activity_selection(activities):
'贪心算法选择活动。首先按照活动的结束时间进行排序,然后从第一个活动开始,选择结束时间最早且与前一个活动不重叠的活动,直到所有活动都被选择。'
activities.sort(key=lambda x: x[1]) # 按结束时间排序
selected_activities = []
current_end_time = 0
for activity in activities:
if activity[0] >= current_end_time:
selected_activities.append(activity)
current_end_time = activity[1]
return selected_activities
def dynamic_programming_activity_selection(activities):
'动态规划算法选择活动。首先按照活动的结束时间进行排序,然后使用动态规划算法求解最长不重叠子序列的长度。最后根据最长不重叠子序列的长度和活动的结束时间,逆序选择活动。'
n = len(activities)
activities.sort(key=lambda x: x[1]) # 按结束时间排序
dp = [1] * n
for i in range(1, n):
for j in range(i):
if activities[i][0] >= activities[j][1]:
dp[i] = max(dp[i], dp[j] + 1)
max_activities = max(dp)
selected_activities = []
current_end_time = float('-inf')
for i in range(n - 1, -1, -1):
if dp[i] == max_activities and activities[i][1] >= current_end_time:
selected_activities.append(activities[i])
current_end_time = activities[i][0]
max_activities -= 1
return selected_activities[::-1]
def compare_execution_time():
'比较贪心算法和动态规划算法的执行时间。对于不同数量的活动,分别计算贪心算法和动态规划算法的执行时间,并绘制折线图进行比较。'
n_values = [8, 16, 32, 64, 128, 256]
greedy_times = []
dp_times = []
for n in n_values:
activities = generate_activities(n)
start_time = time.time()
greedy_activity_selection(activities)
end_time = time.time()
greedy_times.append(end_time - start_time)
start_time = time.time()
dynamic_programming_activity_selection(activities)
end_time = time.time()
dp_times.append(end_time - start_time)
plt.plot(n_values, greedy_times, label='Greedy')
plt.plot(n_values, dp_times, label='Dynamic Programming')
plt.xlabel('Number of activities')
plt.ylabel('Execution time')
plt.legend()
plt.show()
compare_execution_time()
通过比较执行时间,可以看出动态规划算法的执行时间随着活动数量的增加而增加,而贪心算法的执行时间相对较稳定。这是因为动态规划算法需要计算最长不重叠子序列的长度,时间复杂度为O(n^2),而贪心算法只需要进行一次排序和一次遍历,时间复杂度为O(nlogn)。因此,在解决活动选择问题时,如果活动数量较大,可以选择贪心算法来获得更高的效率。
原文地址: https://www.cveoy.top/t/topic/fwBu 著作权归作者所有。请勿转载和采集!