Python实现活动选择问题的贪心算法和动态规划算法
import random
import time
import matplotlib.pyplot as plt
def generate_activities(n):
'''
生成n个活动的开始时间和结束时间
Args:
n: 活动数量
Returns:
一个列表,包含n个活动的开始时间和结束时间
'''
activities = []
for i in range(n):
start_time = random.randint(0, 100)
end_time = start_time + random.randint(1, 10)
activities.append((start_time, end_time))
return activities
def greedy_activity_selection(activities):
'''
使用贪心算法解决活动选择问题
Args:
activities: 一个列表,包含活动的开始时间和结束时间
Returns:
一个列表,包含选择的活动
'''
activities.sort(key=lambda x: x[1]) # 按结束时间排序
selected_activities = []
current_end_time = 0
for activity in activities:
if activity[0] >= current_end_time:
selected_activities.append(activity)
current_end_time = activity[1]
return selected_activities
def dynamic_programming_activity_selection(activities):
'''
使用动态规划算法解决活动选择问题
Args:
activities: 一个列表,包含活动的开始时间和结束时间
Returns:
一个列表,包含选择的活动
'''
n = len(activities)
activities.sort(key=lambda x: x[1]) # 按结束时间排序
dp = [1] * n
for i in range(1, n):
for j in range(i):
if activities[i][0] >= activities[j][1]:
dp[i] = max(dp[i], dp[j] + 1)
max_activities = max(dp)
selected_activities = []
current_end_time = float('-inf')
for i in range(n - 1, -1, -1):
if dp[i] == max_activities and activities[i][1] >= current_end_time:
selected_activities.append(activities[i])
current_end_time = activities[i][0]
max_activities -= 1
return selected_activities[::-1]
def compare_execution_time():
'''
比较贪心算法和动态规划算法的执行时间
'''
n_values = [8, 16, 32, 64, 128, 256] # 增加活动数量范围
greedy_times = []
dp_times = []
for n in n_values:
total_greedy_time = 0
total_dp_time = 0
for _ in range(10): # 每个数量运行10次取平均值
activities = generate_activities(n)
start_time = time.time()
greedy_activity_selection(activities)
end_time = time.time()
total_greedy_time += (end_time - start_time)
start_time = time.time()
dynamic_programming_activity_selection(activities)
end_time = time.time()
total_dp_time += (end_time - start_time)
greedy_times.append(total_greedy_time / 10)
dp_times.append(total_dp_time / 10)
plt.plot(n_values, greedy_times, label='Greedy')
plt.plot(n_values, dp_times, label='Dynamic Programming')
plt.xlabel('Number of activities')
plt.ylabel('Execution time (seconds)')
plt.legend()
plt.title('Execution Time Comparison: Greedy vs. Dynamic Programming')
plt.show()
compare_execution_time()
为了使曲线更加平滑,代码中将生成活动数量的范围从8增加到256,并且对每个数量运行10次取平均值。这样可以获得更准确的执行时间,并且可以更好地观察到两种算法的性能差异。
原文地址: https://www.cveoy.top/t/topic/fwBo 著作权归作者所有。请勿转载和采集!