首先需要导入必要的库和读入数据:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout, Transformer

# 读入训练集和测试集
train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')

接下来,我们需要对数据进行预处理,包括日期的处理、缺失值的处理和特征工程等。

# 合并训练集和测试集,方便进行数据预处理
df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)

# 处理日期特征
df['date'] = pd.to_datetime(df['date'], format='%Y%m%d')
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
df['day_of_week'] = df['date'].dt.dayofweek

# 处理缺失值
df = df.fillna(method='ffill')

# 特征工程
df['close_diff'] = df['close'].diff()
df['close_diff_ratio'] = df['close_diff'] / df['close'].shift(1)
df['volume_delta'] = df['volume'].diff()
df['volume_delta_ratio'] = df['volume_delta'] / df['volume'].shift(1)
df['amount_delta'] = df['amount'].diff()
df['amount_delta_ratio'] = df['amount_delta'] / df['amount'].shift(1)

# 删除无用特征
df = df.drop(['date', 'time'], axis=1)

在进行模型训练之前,我们需要将数据进行归一化处理,以避免特征值之间的差异对模型产生影响。

# 数据归一化处理
scaler = MinMaxScaler()
scaled_df = scaler.fit_transform(df)

# 划分训练集和测试集
train_size = len(train_df)
train_data = scaled_df[:train_size, :]
test_data = scaled_df[train_size:, :]

X_train, y_train = train_data[:, :-1], train_data[:, -1]
X_test, y_test = test_data[:, :-1], test_data[:, -1]

# 调整数据形状
X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1]))
X_test = X_test.reshape((X_test.shape[0], 1, X_test.shape[1]))

接下来,我们可以构建Transformer模型并进行训练。

# 定义Transformer模型
model = Sequential()
model.add(Transformer(d_model=8, num_heads=2, input_shape=(1, X_train.shape[2])))
model.add(LSTM(32, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(1))

# 编译模型
model.compile(optimizer='adam', loss='mse')

# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=64, verbose=2, validation_split=0.2)

# 评估模型
train_score = model.evaluate(X_train, y_train, verbose=0)
test_score = model.evaluate(X_test, y_test, verbose=0)
print('Train Score: %.2f MSE' % (train_score))
print('Test Score: %.2f MSE' % (test_score))

最后,我们可以使用模型对测试集进行预测,并将结果保存到csv文件中。

# 使用模型进行预测
y_pred = model.predict(X_test)

# 反归一化处理
y_pred = scaler.inverse_transform(np.concatenate((X_test[:, 0, :-1], y_pred), axis=1))[:, -1]

# 保存结果到csv文件中
submission = pd.DataFrame({'close': y_pred})
submission.to_csv('submission.csv', index=False)
``

原文地址: https://www.cveoy.top/t/topic/fsQ6 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录