# 导入库from sklearndatasets import load_irisfrom sklearnnaive_bayes import GaussianNBfrom sklearnmodel_selection import train_test_splitimport numpy as np# 加载鸢尾花数据集iris = load_irisx = irisdatay = irista
导入库
from sklearn.datasets import load_iris from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split import numpy as np
加载鸢尾花数据集
iris = load_iris() x = iris['data'] y = iris['target']
将数据集分为训练集和测试集
np.random.seed(0) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)
任务1:创建 GaussianNB 对象
########## Begin ########## GNB = GaussianNB() ########## End ##########
任务2:调用 fit 函数执行训练过程
########## Begin ########## GNB.fit(x_train, y_train) ########## End ##########
调用 predict 函数进行预测
y_pred = GNB.predict(x_test)
计算模型准确率
acc = np.sum(y_pred==y_test)/y_test.size
打印结果
print("真实标签:\n", y_test) print("预测标签:\n", y_pred) print("模型准确率为:", acc
原文地址: https://www.cveoy.top/t/topic/fpGu 著作权归作者所有。请勿转载和采集!