导入库

from sklearn.datasets import load_iris from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split import numpy as np

加载鸢尾花数据集

iris = load_iris() x = iris['data'] y = iris['target']

将数据集分为训练集和测试集

np.random.seed(0) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)

任务1:创建 GaussianNB 对象

########## Begin ########## GNB = GaussianNB() ########## End ##########

任务2:调用 fit 函数执行训练过程

########## Begin ########## GNB.fit(x_train, y_train) ########## End ##########

调用 predict 函数进行预测

y_pred = GNB.predict(x_test)

计算模型准确率

acc = np.sum(y_pred==y_test)/y_test.size

打印结果

print("真实标签:\n", y_test) print("预测标签:\n", y_pred) print("模型准确率为:", acc

# 导入库from sklearndatasets import load_irisfrom sklearnnaive_bayes import GaussianNBfrom sklearnmodel_selection import train_test_splitimport numpy as np# 加载鸢尾花数据集iris = load_irisx = irisdatay = irista

原文地址: https://www.cveoy.top/t/topic/fpGu 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录