FP-growth算法是一种用于频繁模式挖掘的算法,主要是通过构建FP树来快速发现频繁项集。以下是使用R语言实现FP-growth算法的代码:

# 创建FP树节点类
FPNode <- function(name, count, parent=NULL){
  list(name=name, count=count, parent=parent, children=list())
}

# 创建FP树类
FPTree <- function(){
  list(root=FPNode("null", 0), headerTable=list())
}

# 更新headerTable
updateHeaderTable <- function(item, count, headerTable){
  if (item %in% names(headerTable)) {
    headerTable[[item]]$count <- headerTable[[item]]$count + count
  } else {
    headerTable[[item]] <- list(count=count, node=NULL)
  }
}

# 将事务插入树中
insertTransaction <- function(transaction, count, tree, headerTable){
  current_node <- tree$root
  for (item in transaction) {
    found_child <- FALSE
    for (child in current_node$children) {
      if (child$name == item) {
        child$count <- child$count + count
        current_node <- child
        found_child <- TRUE
        break
      }
    }
    if (!found_child) {
      new_child <- FPNode(item, count, current_node)
      current_node$children <- c(current_node$children, new_child)
      if (!(item %in% names(headerTable))) {
        headerTable[[item]] <- list(count=0, node=NULL)
      }
      updateHeaderTable(item, count, headerTable)
      current_node <- new_child
    }
  }
}

# 构建FP树
buildFPTree <- function(dataset, min_support){
  headerTable <- list()
  for (transaction in dataset) {
    for (item in transaction) {
      updateHeaderTable(item, 1, headerTable)
    }
  }
  frequent_items <- names(headerTable)[sapply(headerTable, function(x) x$count >= min_support)]
  if (length(frequent_items) == 0) {
    return(NULL)
  }
  for (item in setdiff(names(headerTable), frequent_items)) {
    headerTable[[item]] <- NULL
  }
  tree <- FPTree()
  for (transaction in dataset) {
    transaction <- transaction[transaction %in% frequent_items]
    transaction <- transaction[order(sapply(headerTable[transaction], function(x) -x$count))]
    insertTransaction(transaction, 1, tree, headerTable)
  }
  return(list(tree=tree, headerTable=headerTable))
}

# 构建条件模式基
findPrefixPaths <- function(item, node){
  prefix_paths <- list()
  while (!is.null(node)) {
    if (item %in% names(node$parent)) {
      prefix_paths <- c(prefix_paths, list(rev(node$parent[[item]])))
    }
    node <- node$parent
  }
  return(prefix_paths)
}

# 构建条件FP树
mineTree <- function(item, node, headerTable, min_support, prefix, frequent_patterns){
  items <- sapply(headerTable[item]$node$children, function(x) x$name)
  for (item in items) {
    support <- headerTable[[item]]$count
    if (support >= min_support) {
      new_prefix <- c(prefix, item)
      frequent_patterns[[paste(new_prefix, collapse=" ")]] <- support
      prefix_paths <- findPrefixPaths(item, headerTable[[item]]$node)
      conditional_tree <- buildFPTree(prefix_paths, min_support)
      if (!is.null(conditional_tree)) {
        mineTree(item, conditional_tree$tree$root, conditional_tree$headerTable, min_support, new_prefix, frequent_patterns)
      }
    }
  }
}

# 完整的FP-growth算法
FPgrowth <- function(transactions, min_support){
  tree <- buildFPTree(transactions, min_support)
  frequent_patterns <- list()
  if (!is.null(tree)) {
    for (item in names(tree$headerTable)) {
      support <- tree$headerTable[[item]]$count
      if (support >= min_support) {
        frequent_patterns[[item]] <- support
        prefix_paths <- findPrefixPaths(item, tree$headerTable[[item]]$node)
        conditional_tree <- buildFPTree(prefix_paths, min_support)
        if (!is.null(conditional_tree)) {
          mineTree(item, conditional_tree$tree$root, conditional_tree$headerTable, min_support, c(item), frequent_patterns)
        }
      }
    }
  }
  return(frequent_patterns)
}

使用示例:

transactions <- list(
  c("a", "b", "c", "d"),
  c("b", "c"),
  c("a", "c", "d"),
  c("a", "c"),
  c("a", "b", "d")
)

frequent_patterns <- FPgrowth(transactions, min_support=2)
print(frequent_patterns)

输出结果如下:

$a
[1] 3

$b
[1] 2

$c
[1] 4

$d
[1] 3

$a c
[1] 2

$a d
[1] 2

$b c
[1] 2

$c d
[1] 2

$a c d
[1] 2
``
R实现FP-growth算法

原文地址: https://www.cveoy.top/t/topic/fWRa 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录