ResUNet架构改进:详解Dense U-Net实现
ResUNet架构改进:详解Dense U-Net实现
本文将介绍如何将ResUNet网络架构修改为Dense U-Net。Dense U-Net利用DenseBlock结构,通过密集的特征连接,提升了模型的特征传递效率和性能。
1. ResUNet架构回顾
ResUNet是一种基于残差连接的U-Net网络,其核心组件是ResidualConv模块。该模块通过跳跃连接,将输入特征图与经过卷积处理后的特征图相加,有效缓解了梯度消失问题,并促进了信息的流动。pythonclass ResidualConv(nn.Module): def init(self, input_dim, output_dim, stride, padding): super(ResidualConv, self).init()
self.conv_block = nn.Sequential( nn.BatchNorm2d(input_dim), nn.ReLU(), nn.Conv2d( input_dim, output_dim, kernel_size=3, stride=stride, padding=padding ), nn.BatchNorm2d(output_dim), nn.ReLU(), nn.Conv2d(output_dim, output_dim, kernel_size=3, padding=1), ) self.conv_skip = nn.Sequential( nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=stride, padding=1), nn.BatchNorm2d(output_dim), )
def forward(self, x):
return self.conv_block(x) + self.conv_skip(x)
2. Dense U-Net改进
Dense U-Net的核心改进在于使用DenseBlock替代ResidualConv模块。DenseBlock的原理是在每个卷积层后,将该层输出的特征图与之前所有层的输出特征图拼接在一起,作为下一层的输入。这种密集连接的方式能够最大程度地保留和复用特征信息,提升模型的表达能力。pythonclass DenseBlock(nn.Module): def init(self, input_dim, output_dim): super(DenseBlock, self).init()
self.conv_block = nn.Sequential( nn.BatchNorm2d(input_dim), nn.ReLU(), nn.Conv2d( input_dim, output_dim, kernel_size=3, stride=1, padding=1 ), )
def forward(self, x): return torch.cat([x, self.conv_block(x)], dim=1)
3. Dense U-Net网络结构
下面是完整的Dense U-Net网络结构代码:pythonclass Upsample(nn.Module): def init(self, input_dim, output_dim, kernel, stride): super(Upsample, self).init()
self.upsample = nn.ConvTranspose2d( input_dim, output_dim, kernel_size=kernel, stride=stride )
def forward(self, x): return self.upsample(x)
class DenseU_Net(nn.Module): def init(self, channel, output_ch, filters=[64, 128, 256, 512, 1024]): super(DenseU_Net, self).init()
self.input_layer = nn.Sequential( nn.Conv2d(channel, filters[0], kernel_size=3, padding=1), nn.BatchNorm2d(filters[0]), nn.ReLU(), nn.Conv2d(filters[0], filters[0], kernel_size=3, padding=1), )
self.dense_block_1 = DenseBlock(filters[0], filters[1]) self.dense_block_2 = DenseBlock(filters[0] + filters[1], filters[2]) self.dense_block_3 = DenseBlock(filters[0] + filters[1] + filters[2], filters[3])
self.bridge = DenseBlock(filters[0] + filters[1] + filters[2] + filters[3], filters[4])
self.upsample_1 = Upsample(filters[4], filters[3], 2, 2) self.up_dense_block1 = DenseBlock(filters[3] + filters[3], filters[3])
self.upsample_2 = Upsample(filters[3], filters[2], 2, 2) self.up_dense_block2 = DenseBlock(filters[2] + filters[2], filters[2])
self.upsample_3 = Upsample(filters[2], filters[1], 2, 2) self.up_dense_block3 = DenseBlock(filters[1] + filters[1], filters[1])
self.upsample_4 = Upsample(filters[1], filters[0], 2, 2) self.up_dense_block4 = DenseBlock(filters[0] + filters[0], filters[0])
self.output_layer = nn.Sequential( nn.Conv2d(filters[0], output_ch, kernel_size=1, stride=1), # nn.Sigmoid(), )
def forward(self, x): # Encode x1 = self.input_layer(x) x2 = self.dense_block_1(x1) x3 = self.dense_block_2(torch.cat([x1, x2], dim=1)) x4 = self.dense_block_3(torch.cat([x1, x2, x3], dim=1)) # Bridge x5 = self.bridge(torch.cat([x1, x2, x3, x4], dim=1)) # Decode x6 = self.upsample_1(x5) x7 = self.up_dense_block1(torch.cat([x6, x4], dim=1))
x8 = self.upsample_2(x7) x9 = self.up_dense_block2(torch.cat([x8, x3], dim=1))
x10 = self.upsample_3(x9) x11 = self.up_dense_block3(torch.cat([x10, x2], dim=1))
x12 = self.upsample_4(x11) x13 = self.up_dense_block4(torch.cat([x12, x1], dim=1))
output = self.output_layer(x13)
return output
在Dense U-Net中:
- 编码阶段使用DenseBlock模块进行特征提取,并通过
torch.cat()函数将不同层级的特征图拼接在一起。- 解码阶段使用反卷积层(Upsample)进行上采样,并将编码阶段对应层级的特征图拼接在一起,输入到DenseBlock模块中进行特征融合。- 最终,通过输出层得到分割结果。
4. 总结
Dense U-Net通过引入DenseBlock结构,实现了更密集的特征连接,提升了模型的特征提取和表达能力。在图像分割等任务中,Dense U-Net相比传统的ResUNet具有更优的性能。
原文地址: https://www.cveoy.top/t/topic/fRo7 著作权归作者所有。请勿转载和采集!