sia = SentimentIntensityAnalyzer# 对评论文本进行断句并划分出包含影响因素单词的短句def split_sentencesreview_text sentences = nltksent_tokenizereview_text filtered_sentences = for sentence in sentences for ke
这段代码的功能是将评论文本进行断句,并筛选出包含影响因素单词的短句。其中,使用了NLTK库的sent_tokenize函数将文本分句,然后遍历所有关键词,如果某个短句中包含了任意一个关键词,则将该短句加入筛选结果列表中。
情感分析结果不一定在区间【0,1】,具体取值范围取决于使用的情感分析工具。如果想对每个短句进行情感分析,并将结果限制在区间【0,1】内,可以使用VADER情感分析工具提供的SentimentIntensityAnalyzer()函数进行计算,并对结果进行归一化处理,例如:
from nltk.sentiment.vader import SentimentIntensityAnalyzer sia = SentimentIntensityAnalyzer()
对每个短句进行情感分析,并归一化结果
def analyze_sentiments(sentences): sentiments = [] for sentence in sentences: polarity_scores = sia.polarity_scores(sentence) compound_score = polarity_scores['compound'] normalized_score = (compound_score + 1) / 2 # 归一化到[0,1]范围内 sentiments.append(normalized_score) return sentiments
filtered_sentences = split_sentences(review_text) sentiments = analyze_sentiments(filtered_sentences) print(sentiments) # 打印每个短句的情感分析结
原文地址: https://www.cveoy.top/t/topic/fIXt 著作权归作者所有。请勿转载和采集!