基于区块链和深度学习的文献智能预测与分析平台

背景技术

[0002] 区块链技术是一种去中心化、开放性和自治性的分布式数据应用模式,通过记录每篇文献的上传、审查和修改历史可以保证文献的不可篡改性和透明性,确保数据安全和隐私保护。利用区块链系统有多方共同监督与维护、透明公开的特点实现了文献的免费共享。同时,采用去中心化的区块链技术,实现无需信任第三方的安全性。除此之外,区块链还具有可溯源功能,能够确保数据被公共监督,更具公信力。

[0003] 随着社会知识的不断更新和迭代,科研人员需要花费大量的时间和精力去阅读相关论文,以了解某领域的研究热点或发展方向。此外,科研人员需要通过获取某篇论文中的热词来更快速了解该论文的主要研究内容,从而提高文献阅读的效率。然而,目前大部分文献管理系统仅提供文献的上传和管理功能,缺乏对文献内容的深度分析和预测功能,无法满足科研人员对文献的需求。

[0004] 传统的文献管理方式存在许多问题,其中最主要的问题是文献上传、审查和修改历史不可追溯。这意味着一旦文献上传后被修改或篡改,就无法追溯到原始版本,因此文献的可信度和真实性难以保证。此外,传统文献管理方式还存在着文献重复上传和重复审查的问题,这不仅浪费时间和资源,还会降低文献管理的效率。传统的文献管理方式难以进行数据统计和分析,无法有效地评估文献的质量和价值。此外,传统的文献管理方式还存在'二次检索'的痛苦,即不同来源、类型、格式的文献存在电脑里时,想要找到符合条件的文献非常困难。这些问题都给科研人员的工作带来了很大的困扰。

[0005] 由上可知,有必要提供一种能够支持智能化分析和预测功能的文献管理系统,以帮助科研人员更快速、准确地了解研究热点和论文内容。

[0006] 近年来,深度学习技术在计算机领域取得了巨大的进展,它可以通过对大量数据的学习和模式识别,实现对复杂问题的高效解决。在文献管理领域,深度学习技术可以应用于文献内容的自动分类、热词提取、情感分析等方面,从而实现文献管理的智能化和自动化。深度学习技术可以通过对文献数据的深层次分析和挖掘,发现文献之间的关联和规律,提高文献管理的效率和准确性。同时,深度学习技术还可以应用于文献推荐和预测,为科研人员提供更加个性化和精准的文献服务。

[0007] 综上所述,结合深度学习技术和区块链技术,可以实现文献管理的智能化和安全化,提高文献管理的效率和质量,为科研人员提供更加便捷、高效和安全的文献服务。

本发明公开了一种文献智能预测与分析平台,该平台包括以下模块:

  • 用户和角色管理单元
  • 文献上传模块
  • 数据总览模块
  • 文献热度排名模块
  • 热词分析模块
  • 模型识别模块
  • 积分管理模块

具体功能模块包括:

  • 用户管理单元
  • 文献上传系统
  • 学科领域管理单元
  • 文献热度排名单元
  • 文献热词分析单元
  • 论文领域识别单元
  • 积分管理单元

技术实现:

本发明采用Vue、SpringBoot和SpringCloud等技术,实现了多功能的论文热词管理系统,提供更加安全、透明、高效的学术交流。

基于区块链和深度学习的文献智能预测与分析平台

原文地址: https://www.cveoy.top/t/topic/f2t5 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录