Python Pandas & Matplotlib: Creating Parallel Coordinates Plots with Data Visualization
Python Pandas & Matplotlib: Creating Parallel Coordinates Plots with Data Visualization
This code demonstrates how to create a parallel coordinates plot using Python's Pandas and Matplotlib libraries, visualizing data from an Excel spreadsheet.
import pandas as pd
import matplotlib.pyplot as plt
# Read data from Excel file
data = pd.read_csv(r'D:\Echarts\Hollywood Movie Dataset\Most Profitable Hollywood Stories - US 2011.csv')
data = data.astype(str)
# Create parallel coordinates plot
pd.plotting.parallel_coordinates(data, 'Genre')
# Add title and axis labels
plt.title('Parallel Coordinates Plot')
plt.xlabel('Features')
plt.ylabel('Values')
plt.xticks(rotation=90)
# Display the plot
plt.show()
Addressing Large Datasets in the Y-Axis:
If the data on the y-axis is overwhelming, you can try these solutions:
- Data Sampling or Filtering: Select a subset of data to visualize, focusing on specific ranges or representative samples.
- Y-Axis Scaling or Grouping: Adjust the scale of the y-axis or group data points into categories for clearer representation.
- Plot Size and Tick Interval Adjustments: Increase the plot size or adjust the tick interval on the y-axis for improved readability.
This guide provides a basic foundation for creating parallel coordinates plots. Experiment with different data sets, visualization parameters, and techniques to tailor the plots to your specific needs and data characteristics.
原文地址: https://www.cveoy.top/t/topic/f0go 著作权归作者所有。请勿转载和采集!