PLS-DA概览图是一种图形化工具,用于可视化偏最小二乘判别分析(Partial Least Squares Discriminant Analysis,PLS-DA)的结果。它可以帮助用户快速和直观地了解样本间的差异和相似性,以及变量的贡献度和相关性。在数据分析中,PLS-DA概览图可以用于以下方面:

  1. 样本分类:通过将样本在概览图中的位置进行比较,可以区分不同的样本类别或群体。

  2. 变量选择:通过观察概览图中的变量贡献度和相关性,可以确定哪些变量对分类有重要贡献。

  3. 模型优化:通过调整PLS-DA模型参数,如主成分数目和正则化参数等,可以优化模型的分类效果。

数据分析流程如下:

  1. 准备数据集,包括样本和变量矩阵。

  2. 进行PLS-DA模型拟合,得到模型参数。

  3. 利用模型参数计算样本的得分和贡献度,以及变量的贡献度和相关性。

  4. 绘制PLS-DA概览图,通过观察概览图中的样本和变量分布,进行分类、变量选择和模型优化等操作。

  5. 根据概览图的结果,进一步进行数据分析和解释。

PLS-DA概览图的作用及其数据分析

原文地址: https://www.cveoy.top/t/topic/eutf 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录