由于题目中没有给出具体的数据和要求的Weibull参数,下面给出一个示例代码,以说明如何编写Excel宏来进行Bootstrap抽样和最小二乘法计算Weibull参数。

首先,我们假设我们需要计算一组数据的Weibull参数,并使用Bootstrap方法来估计参数的置信区间。我们将数据保存在Excel工作簿中,其中第一列为样本编号,第二列为观测值。我们可以编写以下代码来读取数据:

Sub Get_Data()
    Dim dataRange As Range
    Dim data() As Double
    Dim n As Long
    Dim i As Long
    
    ' Get data range
    Set dataRange = Application.InputBox(prompt:="Select data range", Type:=8)
    
    ' Get number of data points
    n = dataRange.Rows.Count - 1
    
    ' Resize data array
    ReDim data(1 To n)
    
    ' Populate data array
    For i = 1 To n
        data(i) = dataRange.Cells(i + 1, 2).Value
    Next i
    
    ' Call Weibull function to calculate parameters
    Call Weibull(data)
End Sub

接下来,我们可以编写一个Weibull函数来计算参数。我们可以使用最小二乘法来拟合Weibull分布,即找到最小化残差平方和的参数。在这个函数中,我们将使用Excel内置的LSQNONLIN函数来求解最小二乘问题。代码如下:

Function Weibull(data() As Double) As Double()
    Dim alpha As Double
    Dim beta As Double
    Dim rss As Double
    Dim params(1 To 2) As Double
    Dim xdata() As Double
    Dim ydata() As Double
    Dim i As Long
    
    ' Resize xdata and ydata arrays
    ReDim xdata(1 To UBound(data))
    ReDim ydata(1 To UBound(data))
    
    ' Sort data in ascending order
    Call QuickSort(data, 1, UBound(data))
    
    ' Populate xdata and ydata arrays
    For i = 1 To UBound(data)
        xdata(i) = Log(data(i))
        ydata(i) = Log(-Log(1 - i / (UBound(data) + 1)))
    Next i
    
    ' Use LSQNONLIN to minimize residual sum of squares
    params(1) = 1
    params(2) = 1
    Call Application.Run("LSQNONLIN", params, xdata, ydata)
    
    alpha = Exp(params(1))
    beta = Exp(-params(2) / params(1))
    
    ' Output results
    Debug.Print "Alpha: " & alpha
    Debug.Print "Beta: " & beta
    
    ' Return parameters
    ReDim Weibull(1 To 2)
    Weibull(1) = alpha
    Weibull(2) = beta
End Function

在计算Weibull参数之后,我们可以使用Bootstrap方法来估计参数的置信区间。我们可以编写以下代码来执行Bootstrap抽样并计算参数的置信区间:

Sub Bootstrap(data() As Double, nBoot As Long)
    Dim alpha() As Double
    Dim beta() As Double
    Dim n As Long
    Dim i As Long
    Dim j As Long
    Dim k As Long
    Dim sample() As Double
    Dim params() As Double
    Dim meanAlpha As Double
    Dim meanBeta As Double
    Dim stdAlpha As Double
    Dim stdBeta As Double
    
    ' Get number of data points
    n = UBound(data)
    
    ' Resize alpha and beta arrays
    ReDim alpha(1 To nBoot)
    ReDim beta(1 To nBoot)
    
    ' Perform bootstrap sampling
    For i = 1 To nBoot
        ' Resize sample array
        ReDim sample(1 To n)
        
        ' Generate random sample
        For j = 1 To n
            k = Int(Rnd() * n) + 1
            sample(j) = data(k)
        Next j
        
        ' Calculate Weibull parameters for sample
        params = Weibull(sample)
        
        ' Store parameters
        alpha(i) = params(1)
        beta(i) = params(2)
    Next i
    
    ' Calculate mean and standard deviation of parameters
    meanAlpha = Application.WorksheetFunction.Average(alpha)
    meanBeta = Application.WorksheetFunction.Average(beta)
    stdAlpha = Application.WorksheetFunction.StDev(alpha)
    stdBeta = Application.WorksheetFunction.StDev(beta)
    
    ' Output results
    Debug.Print "Alpha Mean: " & meanAlpha
    Debug.Print "Alpha Std: " & stdAlpha
    Debug.Print "Beta Mean: " & meanBeta
    Debug.Print "Beta Std: " & stdBeta
End Sub

最后,我们可以调用Bootstrap函数来执行Bootstrap抽样并输出结果。例如,我们可以使用以下代码来执行1000次Bootstrap抽样:

Sub Run_Bootstrap()
    Dim dataRange As Range
    Dim data() As Double
    Dim nBoot As Long
    
    ' Get data range
    Set dataRange = Application.InputBox(prompt:="Select data range", Type:=8)
    
    ' Get number of bootstrap samples
    nBoot = 1000
    
    ' Get data
    data = dataRange.Columns(2).Value
    
    ' Call Bootstrap function
    Call Bootstrap(data, nBoot)
End Sub

注意,这只是一个示例代码,具体实现可能需要根据具体情况进行调整

excel宏编程写bootstrap抽样后利用最小二乘法计算weibull参数

原文地址: https://www.cveoy.top/t/topic/eci1 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录