RANSAC算法拟合平面 python
以下是使用Python实现RANSAC算法拟合平面的示例代码:
import numpy as np
def fit_plane_RANSAC(points, iterations=50, threshold=0.01):
best_inliers = None
best_params = None
for i in range(iterations):
# Randomly select three points to define a plane
indices = np.random.choice(points.shape[0], size=3, replace=False)
p1, p2, p3 = points[indices, :]
# Compute plane normal and d parameter
v1 = p2 - p1
v2 = p3 - p1
normal = np.cross(v1, v2)
normal /= np.linalg.norm(normal)
d = -np.dot(normal, p1)
# Compute distance from all points to plane
distances = np.abs(np.dot(points, normal) + d)
# Count inliers
inliers = points[distances < threshold, :]
if inliers.shape[0] > best_inliers.shape[0]:
best_inliers = inliers
best_params = (normal, d)
return best_params, best_inliers
该函数接受一个Nx3的点云数组作为输入,并返回一个元组,其中包含平面的参数(法向量和d参数)以及在阈值内的最佳内点。iterations参数控制随机选择点的次数,threshold参数控制内点的最大距离
原文地址: https://www.cveoy.top/t/topic/eTFj 著作权归作者所有。请勿转载和采集!