为代码形式如下:

model = Sequential()

第一块

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same', input_shape=(224,224,3))) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2)))

第二块

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same')) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2)))

第三块

model.add(Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same')) model.add(Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same')) model.add(Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2)))

第四块

model.add(Conv2D(512, kernel_size=(3, 3), activation='relu', padding='same')) model.add(Conv2D(512, kernel_size=(3, 3), activation='relu', padding='same')) model.add(Conv2D(512, kernel_size=(3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))

包含一个池化层和两个卷积层每个卷积层包含128个3x3的卷积核输出尺寸为112112128。同样进入第三块包含一个池化层和三个256个3x3的卷积核的卷积层输出尺寸为5656256。然后进入第四块包含一个池化层和三个卷积层每个卷积层包含512个3x3的卷积核输出为2828512的尺寸。改写

原文地址: https://www.cveoy.top/t/topic/eFK3 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录