以下是一个使用Python实现BP神经网络测试Momentum函数的简单示例代码:

import numpy as np

# 定义sigmoid函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 定义BP神经网络类
class BPNN:
    def __init__(self, input_size, hidden_size, output_size):
        # 初始化权重
        self.weights_ih = np.random.randn(input_size, hidden_size)
        self.weights_ho = np.random.randn(hidden_size, output_size)
        # 初始化偏置
        self.bias_h = np.random.randn(hidden_size)
        self.bias_o = np.random.randn(output_size)
        # 初始化学习率和动量系数
        self.learning_rate = 0.1
        self.momentum = 0.9
        # 初始化上一次的权重和偏置的变化量
        self.delta_weights_ih = np.zeros((input_size, hidden_size))
        self.delta_weights_ho = np.zeros((hidden_size, output_size))
        self.delta_bias_h = np.zeros(hidden_size)
        self.delta_bias_o = np.zeros(output_size)

    # 前向传播
    def forward(self, inputs):
        hidden = sigmoid(np.dot(inputs, self.weights_ih) + self.bias_h)
        output = sigmoid(np.dot(hidden, self.weights_ho) + self.bias_o)
        return output

    # 训练网络
    def train(self, inputs, targets):
        # 前向传播
        hidden = sigmoid(np.dot(inputs, self.weights_ih) + self.bias_h)
        output = sigmoid(np.dot(hidden, self.weights_ho) + self.bias_o)

        # 计算误差
        output_error = targets - output
        hidden_error = np.dot(output_error, self.weights_ho.T) * hidden * (1 - hidden)

        # 更新权重和偏置
        self.delta_weights_ho = self.learning_rate * np.dot(hidden.T, output_error) + self.momentum * self.delta_weights_ho
        self.weights_ho += self.delta_weights_ho
        self.delta_bias_o = self.learning_rate * np.sum(output_error, axis=0) + self.momentum * self.delta_bias_o
        self.bias_o += self.delta_bias_o

        self.delta_weights_ih = self.learning_rate * np.dot(inputs.T, hidden_error) + self.momentum * self.delta_weights_ih
        self.weights_ih += self.delta_weights_ih
        self.delta_bias_h = self.learning_rate * np.sum(hidden_error, axis=0) + self.momentum * self.delta_bias_h
        self.bias_h += self.delta_bias_h

# 测试代码
inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
targets = np.array([[0], [1], [1], [0]])

bpnn = BPNN(2, 2, 1)
for i in range(10000):
    bpnn.train(inputs, targets)

print("预测结果:")
for i in range(len(inputs)):
    print(inputs[i], bpnn.forward(inputs[i]))

在上面的代码中,我们定义了一个BPNN类来实现BP神经网络,其中__init__方法用于初始化权重、偏置、学习率和动量系数,forward方法用于进行前向传播,train方法用于训练网络。在train方法中,我们首先进行前向传播,然后计算误差,最后根据误差更新权重和偏置。

值得注意的是,我们在更新权重和偏置时采用了动量函数,即:

$$\Delta w_{t+1} = \alpha \Delta w_t + \eta \frac{\partial E}{\partial w}$$

其中$\alpha$为动量系数,$\eta$为学习率,$\frac{\partial E}{\partial w}$为误差对权重的偏导数。这样可以使得权重更新具有惯性,有助于避免陷入局部最优解


原文地址: https://www.cveoy.top/t/topic/cpgd 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录