Baum-Welch算法用于隐马尔可夫模型的参数估计,其统计量的数学公式如下:

  1. E-步骤(Expectation Step):

对于每个观测序列O,计算在当前参数θ下,第t个时刻处于状态i的概率:

$\gamma_t(i)=P(q_t=i|O,\theta)$

计算在当前参数θ下,第t个时刻处于状态i,第t+1个时刻处于状态j的概率:

$\xi_t(i,j)=P(q_t=i,q_{t+1}=j|O,\theta)$

  1. M-步骤(Maximization Step):

根据E-步骤计算出的统计量,重新估计参数θ:

估计初始状态概率:

$\pi_i=\gamma_1(i)$

估计状态转移概率:

$a_{ij}=\frac{\sum_{t=1}^{T-1}\xi_t(i,j)}{\sum_{t=1}^{T-1}\gamma_t(i)}$

估计发射概率:

$b_j(k)=\frac{\sum_{t=1}^{T}\gamma_t(j)\cdot [O_t=k]}{\sum_{t=1}^{T}\gamma_t(j)}$

其中,[O_t=k]为指示函数,表示当O_t=k时为1,否则为0

计算Baum-Welch统计量的数学公式是什么

原文地址: https://www.cveoy.top/t/topic/cnJI 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录