四元数卷积神经网络完整的代码实现包括模型训练、模型测试和模型评价
由于四元数卷积神经网络的实现方式与传统的卷积神经网络有所不同,因此需要使用特定的库和工具来实现。以下是一个使用TensorFlow库和quaternion库实现四元数卷积神经网络的完整代码示例:
import tensorflow as tf
import quaternion as quat
import numpy as np
# 创建四元数卷积层
class QuaternionConv2D(tf.keras.layers.Layer):
def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', activation=None):
super(QuaternionConv2D, self).__init__()
self.filters = filters
self.kernel_size = kernel_size
self.strides = strides
self.padding = padding
self.activation = activation
def build(self, input_shape):
input_dim = input_shape[-1]
self.kernel_real = self.add_weight(name='kernel_real', shape=(self.kernel_size[0], self.kernel_size[1], input_dim, self.filters), initializer='glorot_uniform', trainable=True)
self.kernel_imag = self.add_weight(name='kernel_imag', shape=(self.kernel_size[0], self.kernel_size[1], input_dim, self.filters), initializer='glorot_uniform', trainable=True)
self.bias = self.add_weight(name='bias', shape=(self.filters,), initializer='zeros', trainable=True)
def call(self, inputs):
# 对输入数据进行四元数化
inputs = quat.as_quat_array(inputs)
# 对卷积核进行四元数化
kernel_quat = quat.as_quat_array(tf.complex(self.kernel_real, self.kernel_imag))
# 进行四元数卷积
conv_quat = tf.nn.conv2d(inputs, kernel_quat, strides=[1, self.strides[0], self.strides[1], 1], padding=self.padding)
# 对四元数卷积结果进行实部和虚部提取
conv_real = tf.math.real(conv_quat)
conv_imag = tf.math.imag(conv_quat)
# 加上偏置项
conv_real = tf.nn.bias_add(conv_real, self.bias)
conv_imag = tf.nn.bias_add(conv_imag, self.bias)
# 应用激活函数
if self.activation is not None:
conv_real = self.activation(conv_real)
conv_imag = self.activation(conv_imag)
# 合并实部和虚部,得到最终输出结果
conv_output = tf.complex(conv_real, conv_imag)
conv_output = quat.as_float_array(conv_output)
return conv_output
# 创建四元数全连接层
class QuaternionDense(tf.keras.layers.Layer):
def __init__(self, units, activation=None):
super(QuaternionDense, self).__init__()
self.units = units
self.activation = activation
def build(self, input_shape):
input_dim = input_shape[-1]
self.kernel_real = self.add_weight(name='kernel_real', shape=(input_dim, self.units), initializer='glorot_uniform', trainable=True)
self.kernel_imag = self.add_weight(name='kernel_imag', shape=(input_dim, self.units), initializer='glorot_uniform', trainable=True)
self.bias = self.add_weight(name='bias', shape=(self.units,), initializer='zeros', trainable=True)
def call(self, inputs):
# 对输入数据进行四元数化
inputs = quat.as_quat_array(inputs)
# 对权重进行四元数化
kernel_quat = quat.as_quat_array(tf.complex(self.kernel_real, self.kernel_imag))
# 进行四元数乘法
output_quat = quat.quaternion_multiply(inputs, kernel_quat)
# 对四元数结果进行实部和虚部提取
output_real = tf.math.real(output_quat)
output_imag = tf.math.imag(output_quat)
# 加上偏置项
output_real = tf.nn.bias_add(output_real, self.bias)
output_imag = tf.nn.bias_add(output_imag, self.bias)
# 应用激活函数
if self.activation is not None:
output_real = self.activation(output_real)
output_imag = self.activation(output_imag)
# 合并实部和虚部,得到最终输出结果
output = tf.complex(output_real, output_imag)
output = quat.as_float_array(output)
return output
# 创建四元数卷积神经网络模型
def create_quaternion_cnn(input_shape):
model = tf.keras.Sequential()
model.add(QuaternionConv2D(32, (3, 3), strides=(1, 1), padding='same', activation='relu', input_shape=input_shape))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(QuaternionConv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(QuaternionConv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(tf.keras.layers.Flatten())
model.add(QuaternionDense(512, activation='relu'))
model.add(QuaternionDense(10, activation='softmax'))
return model
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
x_train = x_train.astype(np.float32) / 255.0
x_test = x_test.astype(np.float32) / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)
# 创建四元数卷积神经网络模型
model = create_quaternion_cnn(input_shape=(28, 28, 1))
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))
# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)
以上代码实现了一个简单的四元数卷积神经网络模型,用于对MNIST手写数字数据集进行分类。在训练和测试数据集上的准确率可以通过test_acc来得到。需要注意的是,由于四元数卷积神经网络的计算复杂度较高,因此训练和测试时间可能会比传统的卷积神经网络长
原文地址: https://www.cveoy.top/t/topic/chej 著作权归作者所有。请勿转载和采集!