geomesa如何实现sql查询而不是用ecql
Geomesa提供了一种称为GeoTools的工具,可以在Java中使用它来查询数据。GeoTools提供了SQL解析器,可以将SQL查询语句转换为ECQL查询语句。因此,您可以使用GeoTools API中的SQL查询解析器来实现SQL查询而不是使用ECQL。以下是一个示例:
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.geotools.data.DataStore;
import org.geotools.data.DataStoreFinder;
import org.geotools.data.Query;
import org.geotools.data.simple.SimpleFeatureCollection;
import org.geotools.data.simple.SimpleFeatureSource;
import org.geotools.factory.CommonFactoryFinder;
import org.geotools.filter.text.cql2.CQLException;
import org.opengis.feature.simple.SimpleFeature;
import org.opengis.feature.simple.SimpleFeatureType;
import org.opengis.filter.Filter;
import org.opengis.filter.FilterFactory2;
public class SqlQueryExample {
public static void main(String[] args) throws IOException, CQLException {
// Connect to the data store
Map<String, Object> connectionParams = new HashMap<>();
connectionParams.put("url", "accumulo://localhost:2181/geomesa");
connectionParams.put("user", "myuser");
connectionParams.put("password", "mypassword");
connectionParams.put("tableName", "mytable");
connectionParams.put("useMock", "false");
DataStore dataStore = DataStoreFinder.getDataStore(connectionParams);
// Get the feature source and type
SimpleFeatureSource featureSource = dataStore.getFeatureSource("mytable");
SimpleFeatureType featureType = featureSource.getSchema();
// Parse the SQL query
FilterFactory2 filterFactory = CommonFactoryFinder.getFilterFactory2();
String sql = "SELECT * FROM mytable WHERE name = 'John'";
Query query = new Query();
query.setFilter(filterFactory.literal(true));
query.setMaxFeatures(Integer.MAX_VALUE);
query.setStartIndex(0);
query.setTypeName(featureType.getTypeName());
query.setHandle("sql");
query.setPropertyNames(Query.ALL_NAMES);
query.setSortBy(new String[] { "timestamp" });
query.setHints(new HashMap<>());
query.getHints().put(QueryHints.QUERY_INDEX_FORCE_CHOICE, Boolean.TRUE);
query.getHints().put(QueryHints.QUERY_INDEX, "myindex");
query.getHints().put(QueryHints.QUERY_INDEX_LOGGING, Boolean.TRUE);
query.getHints().put(QueryHints.QUERY_PLAN_EXPLAIN, Boolean.TRUE);
query.getHints().put(QueryHints.QUERY_TIMEOUT, 60000L);
Filter filter = filterFactory.sql(sql, featureType);
query.setFilter(filter);
// Execute the query and print the results
SimpleFeatureCollection features = featureSource.getFeatures(query);
try (SimpleFeatureIterator iterator = features.features()) {
while (iterator.hasNext()) {
SimpleFeature feature = iterator.next();
System.out.println(feature.getID() + ": " + feature.getAttribute("name"));
}
}
// Close the data store
dataStore.dispose();
}
}
在此示例中,我们使用了filterFactory.sql()方法将SQL查询语句转换为Filter对象,然后将其设置为查询的过滤器。请注意,我们还设置了一些查询提示,例如强制使用索引,选择索引和查询超时。这些提示是可选的,但可以帮助优化查询性能。
原文地址: https://www.cveoy.top/t/topic/bWI9 著作权归作者所有。请勿转载和采集!