以下是一个基于 PyTorch 的手写数字识别模型的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms

# 定义网络结构
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
        self.fc1 = nn.Linear(1024, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 1024)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return nn.functional.log_softmax(x, dim=1)

# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())

# 定义训练参数
batch_size = 64
learning_rate = 0.01
num_epochs = 10

# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 初始化模型和优化器
model = Net()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(num_epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data)
        loss = nn.functional.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试模型
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
    for data, target in test_loader:
        output = model(data)
        test_loss += nn.functional.nll_loss(output, target, reduction='sum').item()
        pred = output.argmax(dim=1, keepdim=True)
        correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
    test_loss, correct, len(test_loader.dataset), accuracy))

该模型使用了两个卷积层和两个全连接层,以及 ReLU 和 max pooling 操作。在训练过程中,使用了 Adam 优化器和负对数似然损失函数。在测试过程中,计算了模型的平均损失和准确率。

该模型在 MNIST 数据集上的测试准确率约为 99%。

pytorch 手写数字识别

原文地址: https://www.cveoy.top/t/topic/bQDm 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录