pytorch 手写数字识别
以下是一个基于 PyTorch 的手写数字识别模型的示例代码:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 定义网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fc1 = nn.Linear(1024, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv2(x))
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 1024)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
# 定义训练参数
batch_size = 64
learning_rate = 0.01
num_epochs = 10
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型和优化器
model = Net()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = nn.functional.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 测试模型
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += nn.functional.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
该模型使用了两个卷积层和两个全连接层,以及 ReLU 和 max pooling 操作。在训练过程中,使用了 Adam 优化器和负对数似然损失函数。在测试过程中,计算了模型的平均损失和准确率。
该模型在 MNIST 数据集上的测试准确率约为 99%。
原文地址: https://www.cveoy.top/t/topic/bQDm 著作权归作者所有。请勿转载和采集!