写一段ai程序永python每句加上注释并且注明效果
#导入所需模块 import tensorflow as tf import numpy as np
#定义一个神经网络模型 def neural_network_model(data): #定义网络结构,这里使用3个隐藏层,每层有256个神经元 hidden_layer_1 = {'weights':tf.Variable(tf.random_normal([len(data[0]), 256])), 'biases':tf.Variable(tf.random_normal([256]))}
hidden_layer_2 = {'weights':tf.Variable(tf.random_normal([256, 256])),
'biases':tf.Variable(tf.random_normal([256]))}
hidden_layer_3 = {'weights':tf.Variable(tf.random_normal([256, 256])),
'biases':tf.Variable(tf.random_normal([256]))}
output_layer = {'weights':tf.Variable(tf.random_normal([256, len(output[0])])),
'biases':tf.Variable(tf.random_normal([len(output[0])]))}
#定义每一层的计算方式
l1 = tf.add(tf.matmul(data, hidden_layer_1['weights']), hidden_layer_1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_layer_2['weights']), hidden_layer_2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_layer_3['weights']), hidden_layer_3['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
#定义训练函数 def train_neural_network(x, y): #定义batch_size和训练次数 batch_size = 100 num_epochs = 10
#调用神经网络模型
prediction = neural_network_model(x)
#定义损失函数
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
#使用Adam优化器进行优化
optimizer = tf.train.AdamOptimizer().minimize(cost)
#开始训练
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
epoch_loss = 0
#将数据分batch进行训练
for i in range(int(len(train_x)/batch_size)):
epoch_x, epoch_y = train_x[i*batch_size:(i+1)*batch_size], train_y[i*batch_size:(i+1)*batch_size]
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', num_epochs, 'loss:', epoch_loss)
#计算准确率
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x:test_x, y:test_y}))
#定义训练数据和测试数据 train_x = np.array(...) train_y = np.array(...) test_x = np.array(...) test_y = np.array(...)
#调用训练函数进行训练 train_neural_network(train_x, train_y)
原文地址: https://www.cveoy.top/t/topic/bLG4 著作权归作者所有。请勿转载和采集!