将神经网络中间层输出转换为numpy 输入自定义网络层 是 出现AttributeError Tensor object has no attribute numpy 如何解决
这个错误是因为在TensorFlow中,Tensor对象没有numpy属性,因为它不是一个numpy数组。要将Tensor对象转换为numpy数组,需要使用.eval()方法或者sess.run()方法。您可以尝试以下解决方案:
- 在自定义网络层中使用.eval()方法将Tensor对象转换为numpy数组:
import tensorflow as tf
import numpy as np
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, units=32):
super(CustomLayer, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(shape=(input_shape[-1], self.units),
initializer='random_normal',
trainable=True)
self.b = self.add_weight(shape=(self.units,),
initializer='random_normal',
trainable=True)
def call(self, inputs):
x = tf.matmul(inputs, self.w) + self.b
x = tf.nn.relu(x)
return x.eval()
# Convert tensor to numpy array
inputs = tf.placeholder(tf.float32, shape=(None, 10))
outputs = CustomLayer(units=64)(inputs)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
x = np.random.rand(1, 10)
y = sess.run(outputs, feed_dict={inputs: x})
print(y)
- 在自定义网络层中使用sess.run()方法将Tensor对象转换为numpy数组:
import tensorflow as tf
import numpy as np
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, units=32):
super(CustomLayer, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(shape=(input_shape[-1], self.units),
initializer='random_normal',
trainable=True)
self.b = self.add_weight(shape=(self.units,),
initializer='random_normal',
trainable=True)
def call(self, inputs):
x = tf.matmul(inputs, self.w) + self.b
x = tf.nn.relu(x)
return x
# Convert tensor to numpy array
inputs = tf.placeholder(tf.float32, shape=(None, 10))
outputs = CustomLayer(units=64)(inputs)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
x = np.random.rand(1, 10)
y = sess.run(outputs, feed_dict={inputs: x})
y = y.numpy()
print(y)
以上两种方法都可以将Tensor对象转换为numpy数组,您可以根据自己的需求选择其中一种。
原文地址: https://www.cveoy.top/t/topic/bKiP 著作权归作者所有。请勿转载和采集!