Python Pandas: 使用 MultiIndex 索引 DataFrame
import pandas as pd
df = pd.DataFrame({ 'school_code': ['s001','s002','s003','s001','s002','s004'], 'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'], 'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'], 'date_Of_Birth': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'], 'weight': [35, 32, 33, 30, 31, 32], 'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4'], 't_id':['t1', 't2', 't3', 't4', 't5', 't6'] })
1. 将 df 的 t_id 列和 school_code 列转变成 MultiIndex, 结果保存为 df1
df1 = df.set_index(['t_id', 'school_code']) print('df1:') print(df1)
2. 选择 df1 中索引 school_code 为 s001 的行,展示结果
df_s001 = df1.loc['s001'] print('\nRows with school_code 's001':') print(df_s001)
原文地址: https://www.cveoy.top/t/topic/bDPe 著作权归作者所有。请勿转载和采集!