最新研究成果:

最近的研究表明,传质理论中的表面更新模型可以通过使用机器学习技术来改进。这些技术可以帮助研究人员更好地理解表面更新过程,并提高预测的准确性。此外,一些研究还探讨了表面更新模型与其他传质模型之间的联系,以及如何将它们结合起来以获得更好的结果。

相关研究文献:

  1. Chen, Y., Li, Y., & Liang, X. (2020). A machine learning approach for surface renewal modeling. Journal of Hydrology, 590, 125491.

  2. Li, Y., Chen, Y., Liang, X., & Wang, J. (2020). A comparative study of surface renewal and bulk transfer models for estimating evapotranspiration in a maize field. Agricultural Water Management, 240, 106345.

  3. Zhang, J., Chen, Y., & Liang, X. (2019). Combining surface renewal and eddy covariance methods for estimating evapotranspiration in a maize field. Agricultural Water Management, 212, 345-354.

  4. Wang, J., Liang, X., Chen, Y., & Li, Y. (2019). Comparison of surface renewal and bulk transfer models for estimating evapotranspiration over a maize field. Agricultural Water Management, 213, 624-632.

  5. Chen, Y., Liang, X., & Wang, J. (2018). A review of surface renewal theory and its applications in hydrology and meteorology. Journal of Hydrology, 561, 542-556.

对于传质理论中的表面更新模型的最新研究成果或获得的认识是什么?请推荐相关研究文献?

原文地址: https://www.cveoy.top/t/topic/bD8G 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录