抱歉,GPT-3.5 Turbo 无法直接运行'fuzz.cmeans' 函数。您可以在本地安装'scikit-fuzzy' 库并将其导入,然后使用'fuzz.cmeans' 函数运行上述代码。以下是使用'fuzz.cmeans' 函数的示例代码:

import numpy as np
import skfuzzy as fuzz

class TSK_FS():
    def __init__(self, n_cluster=20, C=0.1):
        '''
        Takagi-Sugeno-Kang Fuzzy System by Yuqi Cui.
        Follow the style of sklearn
        2018/4/7
        :param n_cluster: number of rules /  number of clusters
        :param C: L2 regularization coefficient
        :param method: 'classification' or 'regression', if classification then target should have size of n_Sample * n_Classes
        '''
        self.n_cluster = n_cluster
        self.lamda = C
        self.trained = False

    def fit(self, X_train, y_train):
        '''
        train TSK
        :param X_train: n_Samples * n_Features
        :param y_train: n_Samples * n_Classes or n_Samples * 1 if regression
        :return:
        '''
        n_samples, n_features = X_train.shape
        n_cluster = self.n_cluster
        assert (n_samples == len(y_train)), \
            'X_train and y_train samples num must be same'
        centers, delta = self.__fcm__(X_train, n_cluster)
        self.centers = centers
        self.delta = delta
        # compute x_g
        xg = self.__gaussian_feature__(X_train, centers, delta)
        # train by pinv
        xg1 = np.dot(xg.T, xg)
        pg = np.linalg.pinv(xg1 + self.lamda * np.eye(xg1.shape[0])).dot(xg.T).dot(y_train)
        # pg = pg.dot(y_train)
        self.pg = pg
        # print(pg)
        self.trained = True

    def predict(self, X_test):
        '''
        predict by test data
        :param X_test: n_Samples * n_Features
        :return: n_Samples * n_Classes or n_Samples * 1 if regression
        '''
        assert(self.trained), "Error when predict, use fit first!"
        xg_test = self.__gaussian_feature__(X_test, self.centers, self.delta)
        y_pred = xg_test.dot(self.pg)
        return y_pred

    def fcm(self, data, n_cluster):
        return self.__fcm__(data, n_cluster)

    def gaussian_feature(self, data, centers, delta):
        return self.__gaussian_feature__(data, centers, delta)

    def __fcm__(self, data, n_cluster):
        '''
        Comute data centers and membership of each point by FCM, and compute the variance of each feature
        :param data: n_Samples * n_Features
        :param n_cluster: number of center
        :return: centers: data center, delta: variance of each feature
        '''
        n_samples, n_features = data.shape
        centers, mem, _, _, _, _, _ = fuzz.cmeans(
            data.T, n_cluster, 2.0, error=1e-5, maxiter=200)

        # compute delta compute the variance of each feature
        delta = np.zeros([n_cluster, n_features])
        for i in range(n_cluster):
            d = (data - centers[i, :]) ** 2
            delta[i, :] = np.sum(d * mem[i, :].reshape(-1, 1), axis=0) / np.sum(mem[i, :])

        return centers, delta

    def __gaussian_feature__(self, data, centers, delta):
        '''
        Compute firing strength using Gaussian model
        :param data: n_Samples * n_Features
        :param centers: data center,n_Clusters * n_Features
        :param delta: variance of each feature, n_Clusters * n_Features
        :return: data_fs data的firing strength, n_Samples * [n_Clusters * (n_Features+1)]
        '''
        n_cluster = self.n_cluster
        n_samples = data.shape[0]
        # compute firing strength of each data, n_Samples * n_Clusters
        mu_a = np.zeros([n_samples, n_cluster])
        for i in range(n_cluster):
            tmp_k = 0 - np.sum((data - centers[i, :]) ** 2 / delta[i, :], axis=1)
            mu_a[:, i] = np.exp(tmp_k)  # exp max 709
        # norm
        mu_a = mu_a / np.sum(mu_a, axis=1, keepdims=True)
        # print(np.count_nonzero(mu_a!=mu_a))
        data_1 = np.concatenate((data, np.ones([n_samples, 1])), axis=1)
        zt = []
        for i in range(n_cluster):
            zt.append(data_1 * mu_a[:, i].reshape(-1, 1))
        data_fs = np.concatenate(zt, axis=1)
        data_fs = np.where(data_fs != data_fs, 1e-5, data_fs)
        return data_fs

# 创建TSK模型对象
model = TSK_FS(n_cluster=20, C=0.1)

# 训练数据集
X_train = np.array([[0.758, 0.171, 0.049, 0.022],
                    [0.758, 0.172, 0.047, 0.023],
                    [0.762, 0.17, 0.047, 0.021],
                    [0.762, 0.17, 0.047, 0.021],
                    [0.76, 0.171, 0.047, 0.021],
                    [0.762, 0.166, 0.051, 0.021],
                    [0.761, 0.171, 0.048, 0.02],
                    [0.757, 0.175, 0.049, 0.019],
                    [0.747, 0.182, 0.052, 0.019],
                    [0.75, 0.174, 0.057, 0.019],
                    [0.746, 0.175, 0.061, 0.018],
                    [0.747, 0.18, 0.055, 0.018],
                    [0.715, 0.204, 0.062, 0.017],
                    [0.696, 0.215, 0.067, 0.022],
                    [0.68, 0.232, 0.066, 0.022],
                    [0.661, 0.246, 0.068, 0.025],
                    [0.653, 0.243, 0.077, 0.027],
                    [0.661, 0.234, 0.078, 0.027],
                    [0.702, 0.201, 0.074, 0.023],
                    [0.702, 0.199, 0.076, 0.023],
                    [0.724, 0.178, 0.074, 0.024],
                    [0.724, 0.175, 0.074, 0.027],
                    [0.725, 0.17, 0.075, 0.03],
                    [0.715, 0.167, 0.084, 0.034],
                    [0.716, 0.164, 0.085, 0.035],
                    [0.692, 0.174, 0.094, 0.04],
                    [0.702, 0.168, 0.084, 0.046],
                    [0.685, 0.17, 0.097, 0.048],
                    [0.674, 0.171, 0.102, 0.053],
                    [0.658, 0.173, 0.113, 0.056],
                    [0.638, 0.184, 0.12, 0.058],
                    [0.622, 0.187, 0.13, 0.061],
                    [0.606, 0.189, 0.136, 0.069],
                    [0.59, 0.189, 0.145, 0.076],
                    [0.577, 0.19, 0.153, 0.08],
                    [0.569, 0.188, 0.159, 0.084],
                    [0.559, 0.186, 0.167, 0.088],
                    [0.562, 0.179, 0.175, 0.084]])

y_train = np.random.rand(X_train.shape[0])

model.fit(X_train, y_train)

# 测试数据集
X_test = np.array([[0.758, 0.171, 0.049, 0.022],
                   [0.758, 0.172, 0.047, 0.023],
                   [0.762, 0.17, 0.047, 0.021],
                   [0.762, 0.17, 0.047, 0.021],
                   [0.76, 0.171, 0.047, 0.021],
                   [0.762, 0.166, 0.051, 0.021],
                   [0.761, 0.171, 0.048, 0.02],
                   [0.757, 0.175, 0.049, 0.019],
                   [0.747, 0.182, 0.052, 0.019],
                   [0.75, 0.174, 0.057, 0.019],
                   [0.746, 0.175, 0.061, 0.018],
                   [0.747, 0.18, 0.055, 0.018],
                   [0.715, 0.204, 0.062, 0.017],
                   [0.696, 0.215, 0.067, 0.022],
                   [0.68, 0.232, 0.066, 0.022],
                   [0.661, 0.246, 0.068, 0.025],
                   [0.653, 0.243, 0.077, 0.027],
                   [0.661, 0.234, 0.078, 0.027],
                   [0.702, 0.201, 0.074, 0.023],
                   [0.702, 0.199, 0.076, 0.023],
                   [0.724, 0.178, 0.074, 0.024],
                   [0.724, 0.175, 0.074, 0.027],
                   [0.725, 0.17, 0.075, 0.03],
                   [0.715, 0.167, 0.084, 0.034],
                   [0.716, 0.164, 0.085, 0.035],
                   [0.692, 0.174, 0.094, 0.04],
                   [0.702, 0.168, 0.084, 0.046],
                   [0.685, 0.17, 0.097, 0.048],
                   [0.674, 0.171, 0.102, 0.053],
                   [0.658, 0.173, 0.113, 0.056],
                   [0.638, 0.184, 0.12, 0.058],
                   [0.622, 0.187, 0.13, 0.061],
                   [0.606, 0.189, 0.136, 0.069],
                   [0.59, 0.189, 0.145, 0.076],
                   [0.577, 0.19, 0.153, 0.08],
                   [0.569, 0.188, 0.159, 0.084],
                   [0.559, 0.186, 0.167, 0.088],
                   [0.562, 0.179, 0.175, 0.084]])

# 预测
y_pred = model.predict(X_test)
print(y_pred)

请确保已经在环境中安装了'scikit-fuzzy' 库,你可以使用以下命令进行安装:

pip install scikit-fuzzy

这样你就可以成功运行使用'fuzz.cmeans' 函数的代码了。

使用 scikit-fuzzy 库的 fuzz.cmeans 函数

原文地址: https://www.cveoy.top/t/topic/Rds 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录