要使用sklearn计算recall和precision,可以使用以下步骤:

  1. 导入所需的库和数据集:
from sklearn.metrics import precision_score, recall_score
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

X, y = make_classification(n_samples=1000, n_features=10, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
  1. 训练模型并进行预测:
from sklearn.linear_model import LogisticRegression

model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
  1. 计算recall和precision:
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
print("Precision:", precision)
print("Recall:", recall)

输出结果将会显示Precision和Recall的值。


原文地址: https://www.cveoy.top/t/topic/BMp 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录