首先,我们需要导入所需的库:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

然后,我们定义ResNet模型:

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=2):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512*block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out

接下来,我们加载数据集并进行预处理:

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

然后,我们定义损失函数和优化器:

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

最后,我们训练模型并进行测试:

for epoch in range(200):
    net.train()
    train_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        _, predicted = outputs.max(1)
        total += targets.size(0)
        correct += predicted.eq(targets).sum().item()

    print('Epoch %d Train Loss: %.3f | Train Acc: %.3f%% (%d/%d)' % (epoch+1, train_loss/(batch_idx+1), 100.*correct/total, correct, total))

    net.eval()
    test_loss = 0
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = net(inputs)
            loss = criterion(outputs, targets)

            test_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

        print('Epoch %d Test Loss: %.3f | Test Acc: %.3f%% (%d/%d)' % (epoch+1, test_loss/(batch_idx+1), 100.*correct/total, correct, total))

调用粒子群算法进行调优的代码如下:

from pyswarm import pso

# 定义目标函数
def objective_function(x):
    lr, momentum, weight_decay = x
    net = ResNet(BasicBlock, [2,2,2,2]).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
    for epoch in range(200):
        net.train()
        train_loss = 0
        correct = 0
        total = 0
        for batch_idx, (inputs, targets) in enumerate(trainloader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = net(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

        net.eval()
        test_loss = 0
        correct = 0
        total = 0
        with torch.no_grad():
            for batch_idx, (inputs, targets) in enumerate(testloader):
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = net(inputs)
                loss = criterion(outputs, targets)

                test_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()

    test_acc = 100.*correct/total
    return -test_acc

# 定义变量范围和粒子数
lb = [0.001, 0.1, 0.0001]
ub = [0.1, 0.9, 0.001]
xopt, fopt = pso(objective_function, lb, ub, swarmsize=10, maxiter=30)

# 输出最优值和最优解
print("Optimization Results: ")
print("Best Parameters: lr=%f, momentum=%f, weight_decay=%f" % (xopt[0], xopt[1], xopt[2]))
print("Best Test Accuracy: %f" % (-fopt))

综上所述,我们可以使用PyTorch框架实现ResNet深度学习算法,并利用粒子群算法进行调优,提高对肺部感染图像进行分类的准确率、精准率、召回率。

展示如何使用PyTorch框架实现ResNet深度学习算法,并利用粒子群算法进行调优,提高对肺部感染图像进行分类的准确率、精准率、召回率

原文地址: http://www.cveoy.top/t/topic/saB 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录