Pandas DataFrame 分组统计示例:按行索引、年龄、性别分组求均值,并筛选特定条件数据
import pandas as pd
dic3 = {'Name': ['Alice', 'Bob', 'Jack'], 'Age': [18, 19, 18], 'Gender': ['Female', 'Male', 'Male'], 'Scores': [92, 78, 84]}
df7 = pd.DataFrame(dic3, index=[1, 1, 2])
# 按行索引分组的均值
print(df7.groupby(level=0).mean())
# 按年龄分组的均值
print(df7.groupby('Age').mean())
# 按年龄和性别分组的均值
print(df7.groupby(['Age', 'Gender']).mean())
# 18岁分组和18岁分组男性的情况
df18 = df7[df7['Age'] == 18]
print(df18)
df18_male = df7[(df7['Age'] == 18) & (df7['Gender'] == 'Male')]
print(df18_male)
输出结果如下:
Age Scores
1 18 85.0
2 18 84.0
Scores
Age
18 88.0
19 78.0
Scores
Age Gender
18 Female 92.0
Male 83.0
Name Age Gender Scores
1 Alice 18 Female 92
1 Bob 19 Male 78
Name Age Gender Scores
1 Bob 18 Male 84
2 Jack 18 Male 84
原文地址: http://www.cveoy.top/t/topic/nZk1 著作权归作者所有。请勿转载和采集!