Python实现算术编解码:无损数据压缩算法
算术编码是一种用于无损数据压缩的技术,它通过使用一个区间来表示输入数据的概率范围。下面是一个简单的算术编解码的Python实现示例:
class ArithmeticEncoder:
def __init__(self):
self.low = 0.0
self.high = 1.0
self.value = 0.0
self.bits_to_follow = 0
self.output = []
def encode(self, data, probabilities):
for symbol in data:
low_range = self.low + (self.high - self.low) * probabilities[symbol][0]
high_range = self.low + (self.high - self.low) * probabilities[symbol][1]
self.update_range(low_range, high_range)
# Output the final bits
if self.low < 0.5:
self.output.append(0)
self.bits_to_follow += 1
else:
self.output.append(1)
self.bits_to_follow += 1
# Output the trailing bits
for _ in range(self.bits_to_follow):
if self.low < 0.5:
self.output.append(1)
else:
self.output.append(0)
return self.output
def update_range(self, low_range, high_range):
self.low = low_range
self.high = high_range
# Scale the range to avoid underflow or overflow
while self.low < 0.5 and self.high < 0.5 or self.low >= 0.5 and self.high >= 0.5:
if self.low < 0.25:
self.output.append(0)
self.bits_to_follow += 1
self.low *= 2
self.high *= 2
elif self.low >= 0.75:
self.output.append(1)
self.bits_to_follow += 1
self.low = (self.low - 0.75) * 2
self.high = (self.high - 0.75) * 2
else:
break
# Renormalize the range
while self.low >= 0.25 and self.high < 0.75:
self.low = (self.low - 0.25) * 2
self.high = (self.high - 0.25) * 2
class ArithmeticDecoder:
def __init__(self, encoded_data, probabilities):
self.encoded_data = encoded_data
self.probabilities = probabilities
self.low = 0.0
self.high = 1.0
self.value = 0.0
self.output = []
def decode(self):
for _ in range(len(self.encoded_data)):
symbol = self.get_symbol()
self.output.append(symbol)
low_range = self.low + (self.high - self.low) * self.probabilities[symbol][0]
high_range = self.low + (self.high - self.low) * self.probabilities[symbol][1]
self.update_range(low_range, high_range)
return self.output
def get_symbol(self):
symbol = None
range_size = self.high - self.low
for symbol, (low_prob, high_prob) in self.probabilities.items():
symbol_range = (high_prob - low_prob) * range_size
if self.low <= low_prob * range_size < self.high <= high_prob * range_size:
self.low = low_prob * range_size
self.high = high_prob * range_size
break
return symbol
def update_range(self, low_range, high_range):
self.low = low_range
self.high = high_range
# Scale the range to avoid underflow or overflow
while self.low < 0.5 and self.high < 0.5 or self.low >= 0.5 and self.high >= 0.5:
if self.low < 0.25:
self.low *= 2
self.high *= 2
elif self.low >= 0.75:
self.low = (self.low - 0.75) * 2
self.high = (self.high - 0.75) * 2
else:
break
# Renormalize the range
while self.low >= 0.25 and self.high < 0.75:
self.low = (self.low - 0.25) * 2
self.high = (self.high - 0.25) * 2
# Example usage
# Define the probabilities for each symbol
probabilities = {
'A': (0.2, 0.4),
'B': (0.4, 0.6),
'C': (0.6, 0.8),
'D': (0.8, 1.0)
}
# Input data to be encoded
data = ['A', 'B', 'C', 'D']
# Encode the data
encoder = ArithmeticEncoder()
encoded_data = encoder.encode(data, probabilities)
print('Encoded data:', encoded_data)
# Decode the data
decoder = ArithmeticDecoder(encoded_data, probabilities)
decoded_data = decoder.decode()
print('Decoded data:', decoded_data)
这个实现中,ArithmeticEncoder 类用于编码输入数据,ArithmeticDecoder 类用于解码经过编码的数据。在示例中,我们使用了一个简单的概率分布来演示算术编解码的过程。编码过程将输入数据转换为一串二进制编码,解码过程将编码数据转换回原始的输入数据。
原文地址: http://www.cveoy.top/t/topic/hnWy 著作权归作者所有。请勿转载和采集!