导入所需库

import jieba import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from gensim.models import Word2Vec

读取数据集

corpus = pd.read_csv('corpus.txt', sep='\t', header=None, names=['label', 'text'])

分词处理

corpus['text_cut'] = corpus['text'].apply(lambda x: ' '.join(jieba.cut(x)))

停用词处理

stopwords = pd.read_csv('stopwords.txt', sep='\t', header=None, names=['stopword'], encoding='utf-8') corpus['text_cut_stop'] = corpus['text_cut'].apply(lambda x: ' '.join([word for word in x.split() if word not in stopwords['stopword'].tolist()]))

文本向量化

one-hot编码

cv = CountVectorizer() one_hot = cv.fit_transform(corpus['text_cut_stop']).toarray()

TF-IDF编码

tfidf = TfidfVectorizer() tf_idf = tfidf.fit_transform(corpus['text_cut_stop']).toarray()

Word2Vec编码

w2v = Word2Vec([text.split() for text in corpus['text_cut_stop']], size=100, min_count=1) w2v_vec = [] for text in corpus['text_cut_stop']: vec = [] for word in text.split(): vec.append(w2v.wv[word]) w2v_vec.append(sum(vec) / len(vec)

给定数据集corpus该数据集包含若干类数据请采用文本预处理方法实现文本分词、停用词处理、文本向量化可采用one-hot、TF-IDF、Word2Vev等python代码 编写

原文地址: http://www.cveoy.top/t/topic/fmpW 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录