文本预处理方法:

  1. 文本分词:将文本划分为一个个单词。

  2. 停用词处理:去除一些无意义的词,如“的”、“了”等。

  3. 文本向量化:将文本转换成向量,以便进行机器学习或深度学习等操作。

代码实现:

首先,需要安装以下库:

!pip install jieba scikit-learn pandas numpy

其中,jieba用于中文分词,scikit-learn用于TF-IDF文本向量化,pandas用于数据处理,numpy用于科学计算。

文本分词:

import jieba
import os

# 读取文本文件并进行分词
def read_file(file_path):
    with open(file_path, 'r', encoding='utf-8') as f:
        text = f.read()
        seg_list = jieba.cut(text)
        return seg_list

# 读取整个数据集并进行分词
def read_corpus(corpus_path):
    corpus = []
    labels = []
    for root, dirs, files in os.walk(corpus_path):
        for file in files:
            label = root.split('\\')[-1]
            labels.append(label)
            seg_list = read_file(os.path.join(root, file))
            corpus.append(' '.join(seg_list))
    return corpus, labels

停用词处理:

import jieba
import os

# 读取停用词文件
def read_stopwords(stopwords_path):
    with open(stopwords_path, 'r', encoding='utf-8') as f:
        stopwords = [line.strip() for line in f]
        return stopwords

# 去除停用词
def remove_stopwords(seg_list, stopwords):
    return [word for word in seg_list if word not in stopwords]

# 读取文本文件并进行分词和停用词处理
def read_file(file_path, stopwords):
    with open(file_path, 'r', encoding='utf-8') as f:
        text = f.read()
        seg_list = jieba.cut(text)
        seg_list = remove_stopwords(seg_list, stopwords)
        return seg_list

# 读取整个数据集并进行分词和停用词处理
def read_corpus(corpus_path, stopwords_path):
    stopwords = read_stopwords(stopwords_path)
    corpus = []
    labels = []
    for root, dirs, files in os.walk(corpus_path):
        for file in files:
            label = root.split('\\')[-1]
            labels.append(label)
            seg_list = read_file(os.path.join(root, file), stopwords)
            corpus.append(' '.join(seg_list))
    return corpus, labels

文本向量化:

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

# one-hot向量化
def one_hot_vectorizer(corpus):
    vectorizer = CountVectorizer()
    X = vectorizer.fit_transform(corpus)
    return X.toarray()

# TF-IDF向量化
def tfidf_vectorizer(corpus):
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(corpus)
    return X.toarray()

完整代码:

import jieba
import os
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import pandas as pd
import numpy as np

# 读取停用词文件
def read_stopwords(stopwords_path):
    with open(stopwords_path, 'r', encoding='utf-8') as f:
        stopwords = [line.strip() for line in f]
        return stopwords

# 去除停用词
def remove_stopwords(seg_list, stopwords):
    return [word for word in seg_list if word not in stopwords]

# 读取文本文件并进行分词和停用词处理
def read_file(file_path, stopwords):
    with open(file_path, 'r', encoding='utf-8') as f:
        text = f.read()
        seg_list = jieba.cut(text)
        seg_list = remove_stopwords(seg_list, stopwords)
        return seg_list

# 读取整个数据集并进行分词和停用词处理
def read_corpus(corpus_path, stopwords_path):
    stopwords = read_stopwords(stopwords_path)
    corpus = []
    labels = []
    for root, dirs, files in os.walk(corpus_path):
        for file in files:
            label = root.split('\\')[-1]
            labels.append(label)
            seg_list = read_file(os.path.join(root, file), stopwords)
            corpus.append(' '.join(seg_list))
    return corpus, labels

# one-hot向量化
def one_hot_vectorizer(corpus):
    vectorizer = CountVectorizer()
    X = vectorizer.fit_transform(corpus)
    return X.toarray()

# TF-IDF向量化
def tfidf_vectorizer(corpus):
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(corpus)
    return X.toarray()

# Word2Vec向量化
def word2vec_vectorizer(corpus):
    pass

if __name__ == "__main__":
    corpus_path = './corpus'
    stopwords_path = './stopwords.txt'
    corpus, labels = read_corpus(corpus_path, stopwords_path)
    X_one_hot = one_hot_vectorizer(corpus)
    X_tfidf = tfidf_vectorizer(corpus)
    print(X_one_hot.shape)
    print(X_tfidf.shape)
``
给定数据集corpus该数据集包含若干类数据其目录结构为:2个每个目录下面有若干个文本文件其结构如下所示:Cls11txt2txtCls21txt2txt请采用文本预处理方法实现文本分词、停用词处理、文本向量化可采用one-hot、TF-IDF、Word2Vev等python代码 编写

原文地址: http://www.cveoy.top/t/topic/fmm8 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录