MATLAB亚像素边缘提取:Zernike矩方法实现
以下是一个用于计算Zernike矩和边缘检测的MATLAB代码示例:
% 计算Zernike矩
function [Z00, Z11, Z20, Z31, Z40] = calculateZernikeMoments(image)
% 定义Zernike矩的模板
M00 = @(rho, theta) 1;
M11 = @(rho, theta) rho .* cos(theta);
M20 = @(rho, theta) 2 * rho.^2 - 1;
M31 = @(rho, theta) rho .* (3 * rho.^2 - 2) .* cos(theta);
M40 = @(rho, theta) 6 * rho.^4 - 6 * rho.^2 + 1;
% 初始化Zernike矩
Z00 = 0;
Z11 = 0;
Z20 = 0;
Z31 = 0;
Z40 = 0;
% 获取图像大小
[rows, cols] = size(image);
% 计算Zernike矩
for row = 1:rows
for col = 1:cols
rho = sqrt((row - rows/2)^2 + (col - cols/2)^2) / (rows/2);
theta = atan2((col - cols/2), (row - rows/2));
Z00 = Z00 + image(row, col) * M00(rho, theta);
Z11 = Z11 + image(row, col) * M11(rho, theta);
Z20 = Z20 + image(row, col) * M20(rho, theta);
Z31 = Z31 + image(row, col) * M31(rho, theta);
Z40 = Z40 + image(row, col) * M40(rho, theta);
end
end
end
% 边缘检测
function [edgeImage] = detectEdges(image, kt, lt)
% 计算Zernike矩
[Z00, Z11, Z20, Z31, Z40] = calculateZernikeMoments(image);
% 计算边缘角度
phi = atan(imag(Z31) / real(Z31));
% 计算边缘长度
l1 = sqrt((5*real(Z40) + 3*real(Z20)) / (8*real(Z20)));
l1_prime = -sqrt((5*real(Z40) + 3*real(Z20)) / (8*real(Z20)));
l2 = sqrt((5*real(Z31) + real(Z11)) / (6*real(Z11)));
l2_prime = -sqrt((5*real(Z31) + real(Z11)) / (6*real(Z11)));
l = (l1 + l2) / 2;
% 计算k和h
k = 3*real(Z11) / (2 * (1 - l2^2)^(3/2));
h = (real(Z00) - (k*pi)/2 + k*asin(l2) + k*l2*sqrt(1-l2^2)) / pi;
% 判断是否为边缘点
if k >= kt && abs(l2 - l1) <= lt
edgeImage = 1;
else
edgeImage = 0;
end
end
% 主程序
image = imread('your_image.jpg'); % 读取图像
grayImage = rgb2gray(image); % 转换为灰度图像
% 边缘检测参数
kt = 0.5; % k的阈值
lt = 0.1; % l的阈值
% 初始化边缘图像
edgeImage = zeros(size(grayImage));
% 遍历图像的每个像素点进行边缘检测
for row = 1:size(grayImage, 1)
for col = 1:size(grayImage, 2)
subImage = grayImage(row-3:row+3, col-3:col+3); % 获取7x7的子图像
edgeImage(row, col) = detectEdges(subImage, kt, lt); % 边缘检测
end
end
% 显示边缘图像
imshow(edgeImage);
请注意,这只是一个示例代码,具体的实现可能因应用场景的不同而有所变化。你可能需要根据自己的需求进行适当的修改和调整。
原文地址: http://www.cveoy.top/t/topic/fCbF 著作权归作者所有。请勿转载和采集!