MATLAB 亚像素边缘检测:基于Zernike矩的实现
以下是使用MATLAB编写的代码,用于计算Zernike矩和边缘检测:
% 图像读取
img = imread('image.jpg');
img = rgb2gray(img);
% Zernike矩阵模板
M = [1, 0, 2, 0, 3;
0, 1, 0, 1, 0;
1, 0, -2, 0, 3;
0, 3, 0, 3, 0;
6, 0, 0, 0, 0];
% 图像尺寸
[rows, cols] = size(img);
% 初始化边缘点坐标
edge_points = [];
% 遍历图像的每个像素点
for i = 2:rows-1
for j = 2:cols-1
% 计算Zernike矩
Z = zeros(size(M));
for m = 1:size(M, 1)
for n = 1:size(M, 2)
Z(m, n) = sum(sum(double(img(i-1:i+1, j-1:j+1)) .* M(m, n)));
end
end
% 计算边缘角度
phi = atan2(imag(Z(4, 1)), real(Z(4, 1)));
% 计算边缘长度
l1 = sqrt((5*real(Z(5, 1))+3*real(Z(3, 1)))/(8*real(Z(3, 1))));
l2 = sqrt((5*real(Z(4, 2))+real(Z(2, 2)))/(6*real(Z(2, 2))));
l = (l1 + l2) / 2;
% 计算k和h
k = 3*real(Z(2, 2))/(2*(1-l2^2)^(3/2));
h = (real(Z(1, 1))-(k*pi)/2+k*asin(l2)+k*l2*sqrt(1-l2^2))/pi;
% 判断是否为边缘点
kt = 0.1; % k的阈值
lt = 0.1; % |l2-l1|的阈值
if k >= kt && abs(l2-l1) <= lt
edge_points = [edge_points; j, i];
end
end
end
% 边缘检测
edge_img = zeros(size(img));
for i = 1:size(edge_points, 1)
edge_img(edge_points(i, 2), edge_points(i, 1)) = 255;
end
% 显示结果
figure;
subplot(1, 2, 1);
imshow(img);
title('原始图像');
subplot(1, 2, 2);
imshow(edge_img);
title('边缘检测结果');
请注意,上述代码仅提供了一个基本的框架,需要根据具体的需求进行调整和完善。
原文地址: http://www.cveoy.top/t/topic/fCav 著作权归作者所有。请勿转载和采集!