由于需要读取多个csv文件进行聚类,我选择Python作为实现语言,使用scikit-learn库中的KMeans算法进行聚类,使用matplotlib库进行可视化,并使用pandas库读取和写入csv文件。

首先,读取txt文件中的csv文件名,并将每个csv文件中的数据读入到一个大的列表中:

import os
import pandas as pd

file_list = []

with open('file_names.txt', 'r') as f:
    for line in f:
        file_list.append(line.strip())

data = []

for file_name in file_list:
    file_path = os.path.join('Abnormal', file_name)
    df = pd.read_csv(file_path, header=None, skiprows=1)
    data.append(df.values.flatten())

然后,使用KMeans算法进行聚类:

from sklearn.cluster import KMeans

k = 5 # 聚类数量
kmeans = KMeans(n_clusters=k)
kmeans.fit(data)
labels = kmeans.labels_

接下来,使用matplotlib库对聚类结果进行可视化,并将可视化结果保存到本地:

import matplotlib.pyplot as plt

colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k']
for i in range(k):
    plt.scatter(data[labels == i, 0], data[labels == i, 1], s=10, c=colors[i % len(colors)], label='Cluster %d' % i)

plt.legend()
plt.savefig('cluster_result.png')
plt.show()

最后,将每个csv文件的聚类结果保存到本地:

for i, file_name in enumerate(file_list):
    df = pd.read_csv(os.path.join('Abnormal', file_name), header=None, skiprows=1)
    df['label'] = labels[i]
    df.to_csv(os.path.join('Clustered', file_name), index=False, header=False)

完整代码如下:

import os
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

file_list = []

with open('file_names.txt', 'r') as f:
    for line in f:
        file_list.append(line.strip())

data = []

for file_name in file_list:
    file_path = os.path.join('Abnormal', file_name)
    df = pd.read_csv(file_path, header=None, skiprows=1)
    data.append(df.values.flatten())

k = 5 # 聚类数量
kmeans = KMeans(n_clusters=k)
kmeans.fit(data)
labels = kmeans.labels_

colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k']
for i in range(k):
    plt.scatter(data[labels == i, 0], data[labels == i, 1], s=10, c=colors[i % len(colors)], label='Cluster %d' % i)

plt.legend()
plt.savefig('cluster_result.png')
plt.show()

for i, file_name in enumerate(file_list):
    df = pd.read_csv(os.path.join('Abnormal', file_name), header=None, skiprows=1)
    df['label'] = labels[i]
    df.to_csv(os.path.join('Clustered', file_name), index=False, header=False)
``

原文地址: http://www.cveoy.top/t/topic/cd3i 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录