写一段python代码实现以下内容:1 生成有损图像a 受损图像X是由原始图像添加了不同噪声遮罩noisemasksM ∈ ℛ�∗�∗�得到的X = I ⊙ M其中⊙是逐元素相乘。b 噪声遮罩仅包含01值。对原图的噪声遮罩的可以 RGB 通道分别以080406 的噪声概率产生的即噪声遮罩 RGB 通道的像素值各有804060的概率值为 0否则为 12 有损图像的恢复使用区域二元线性回归模型进行图像
import numpy as np
from PIL import Image
# 生成有损图像
def generate_noisy_image(image_path):
# 读取原始图像
img = Image.open(image_path)
# 转换为numpy数组
img_arr = np.asarray(img)
# 获取图像尺寸
height, width, channel = img_arr.shape
# 生成噪声遮罩
noise_mask = np.zeros((height, width, channel), dtype=np.uint8)
noise_mask[:, :, 0] = np.random.choice([0, 1], size=(height, width), p=[0.8, 0.2])
noise_mask[:, :, 1] = np.random.choice([0, 1], size=(height, width), p=[0.4, 0.6])
noise_mask[:, :, 2] = np.random.choice([0, 1], size=(height, width), p=[0.6, 0.4])
# 生成有损图像
noisy_img_arr = img_arr * noise_mask
# 转换为PIL图像
noisy_img = Image.fromarray(noisy_img_arr)
return noisy_img
# 有损图像的恢复
def restore_image(noisy_image_path):
# 读取有损图像
noisy_img = Image.open(noisy_image_path)
# 转换为numpy数组
noisy_img_arr = np.asarray(noisy_img)
# 获取图像尺寸
height, width, channel = noisy_img_arr.shape
# 初始化恢复图像数组
restored_img_arr = np.zeros((height, width, channel), dtype=np.uint8)
# 对于每个像素
for i in range(height):
for j in range(width):
for k in range(channel):
# 如果噪声遮罩为1,则直接使用有损图像像素值
if noisy_img_arr[i, j, k] != 0:
restored_img_arr[i, j, k] = noisy_img_arr[i, j, k]
else:
# 否则计算区域二元线性回归模型
x = i - 1
y = j - 1
while x >= 0 and noisy_img_arr[x, j, k] == 0:
x -= 1
while y >= 0 and noisy_img_arr[i, y, k] == 0:
y -= 1
if x < 0 or y < 0:
restored_img_arr[i, j, k] = 0
else:
x1 = x
y1 = y
x2 = i - 1
y2 = j - 1
while x2 >= 0 and noisy_img_arr[x2, j, k] == 0:
x2 -= 1
while y2 >= 0 and noisy_img_arr[i, y2, k] == 0:
y2 -= 1
if x2 < 0 or y2 < 0:
restored_img_arr[i, j, k] = 0
else:
x3 = x2
y3 = y1
x4 = x1
y4 = y2
A = np.array([[x1, y1, 1], [x2, y2, 1], [x3, y3, 1]])
b = np.array([noisy_img_arr[x1, y1, k], noisy_img_arr[x2, y2, k], noisy_img_arr[x3, y3, k]])
x0 = np.linalg.solve(A, b)
restored_img_arr[i, j, k] = int(round(x0[0]*i + x0[1]*j + x0[2]))
# 转换为PIL图像
restored_img = Image.fromarray(restored_img_arr)
return restored_img
# 计算误差
def calculate_error(original_image_path, restored_image_path):
# 读取原始图像和恢复图像
original_img = Image.open(original_image_path)
restored_img = Image.open(restored_image_path)
# 转换为numpy数组
original_img_arr = np.asarray(original_img)
restored_img_arr = np.asarray(restored_img)
# 计算2-范数之和
error = np.linalg.norm(original_img_arr - restored_img_arr)
return error
# 测试
if __name__ == "__main__":
# 生成有损图像
noisy_img = generate_noisy_image("original_image.jpg")
noisy_img.save("noisy_image.jpg")
# 恢复图像
restored_img = restore_image("noisy_image.jpg")
restored_img.save("restored_image.jpg")
# 计算误差
error = calculate_error("original_image.jpg", "restored_image.jpg")
print("Error:", error)
原文地址: http://www.cveoy.top/t/topic/bxPn 著作权归作者所有。请勿转载和采集!