yolov7中如何融合sppfcpc模块给我代码实现
以下是YOLOv7融合SPPFCPC模块的示例代码:
首先,在yolov7/models/csp.py文件中,我们需要为SPPFCPC模块定义一个新的类。这个类将包含SPP和FCPC模块的定义。
class SPPFCPC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13)):
super(SPPFCPC, self).__init__()
self.conv1 = Conv(in_channels, out_channels, 1)
self.conv2 = Conv(out_channels * (len(kernel_sizes) + 1), out_channels, 1)
self.spp = SPP(out_channels, kernel_sizes=kernel_sizes)
self.fcpc = FCPC(out_channels, out_channels)
def forward(self, x):
x = self.conv1(x)
x = self.spp(x)
x = self.fcpc(x)
x = torch.cat((x, self.spp(x)), dim=1)
x = self.conv2(x)
return x
在这个类中,我们定义了一个包含1个卷积层、1个SPP层、1个FCPC层和1个卷积层的网络。我们将SPP和FCPC模块的输出连接在一起,然后通过一个卷积层来获得最终的输出。
接下来,在yolov7/models/yolo.py文件中,我们需要使用新定义的SPPFCPC类来替换原来的CSPBlock类。
class CSPBlock(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks, shortcut=True, e=0.5):
super(CSPBlock, self).__init__()
self.shortcut = shortcut
hidden_channels = int(out_channels * e)
self.conv1 = Conv(in_channels, hidden_channels, 1)
self.conv2 = Conv(in_channels, hidden_channels, 1)
self.conv3 = Conv(hidden_channels, hidden_channels, 1)
self.conv4 = Conv(hidden_channels, hidden_channels, 1)
self.conv5 = Conv(2 * hidden_channels, out_channels, 1)
self.layers = nn.Sequential(*[
ResLayer(hidden_channels, hidden_channels, shortcut=False)
for _ in range(num_blocks)
])
self.spp_fcpc = SPPFCPC(hidden_channels, hidden_channels)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
x2 = self.layers(x2)
x2 = self.spp_fcpc(x2)
x3 = self.conv3(x2)
x4 = self.conv4(x3)
x3 = torch.cat((x3, x4), dim=1)
x3 = self.conv5(x3)
if self.shortcut:
x1 = F.interpolate(x1, size=x3.shape[2:], mode='nearest')
x = torch.cat((x1, x3), dim=1)
else:
x = x3
return x
在这个类中,我们将原来的卷积层和ResLayer替换为了SPPFCPC模块。我们还添加了一个shortcut参数,用于控制是否需要将原始输入连接到输出中。如果shortcut为False,则直接将SPPFCPC的输出作为最终输出。如果shortcut为True,则将原始输入通过一个插值层来与SPPFCPC的输出连接在一起。
原文地址: http://www.cveoy.top/t/topic/bAlR 著作权归作者所有。请勿转载和采集!