这是一个经典的旅行商问题(Traveling Salesman Problem,TSP),它属于组合优化问题,寻找一条路径,使得从一个城市出发,经过所有其他城市后回到起始城市,并且路径长度最短。对于这个问题,可以使用启发式算法来解决。以下是使用遗传算法(Genetic Algorithm)来解决TSP的示例代码,并满足路径长度大于给定值的要求:

% 城市坐标数据
city_coordinates = [0, 0; 1, 1; 2, 2; 3, 3; 4, 4];

% 距离矩阵
num_cities = size(city_coordinates, 1);
distance_matrix = pdist2(city_coordinates, city_coordinates);

% 参数设置
population_size = 50; % 种群大小
mutation_rate = 0.02; % 变异率
max_generations = 1000; % 最大迭代次数
min_distance = 5; % 最小路径距离

% 初始化种群
population = zeros(population_size, num_cities);
for i = 1:population_size
    population(i, :) = randperm(num_cities);
end

% 进化过程
best_distance = inf;
for generation = 1:max_generations
    % 计算每个个体的适应度(路径长度)
distances = zeros(population_size, 1);
for i = 1:population_size
    distances(i) = calculateDistance(population(i, :), distance_matrix);
end
    
    % 更新最优路径
    [min_distance, best_idx] = min(distances);
    best_path = population(best_idx, :);
    
    % 终止条件:最优路径大于给定值
    if min_distance > min_distance
        break;
    end
    
    % 选择和交叉
    new_population = zeros(population_size, num_cities);
    for i = 1:population_size
        % 选择父代
        parent1 = selection(population, distances);
        parent2 = selection(population, distances);
        
        % 交叉操作
        child = crossover(parent1, parent2);
        
        % 变异操作
        child = mutation(child, mutation_rate);
        
        % 添加子代到新的种群中
        new_population(i, :) = child;
    end
    
    % 更新种群
    population = new_population;
end

% 输出结果
disp('Best Path:');
disp(best_path);
disp('Best Distance:');
disp(min_distance);

% 绘制最优路径
figure;
hold on;
for i = 1:num_cities-1
    from_city = best_path(i);
    to_city = best_path(i+1);
    x = [city_coordinates(from_city, 1), city_coordinates(to_city, 1)];
    y = [city_coordinates(from_city, 2), city_coordinates(to_city, 2)];
    plot(x, y, 'b');
end
x = [city_coordinates(best_path(end), 1), city_coordinates(best_path(1), 1)];
y = [city_coordinates(best_path(end), 2), city_coordinates(best_path(1), 2)];
plot(x, y, 'b');
scatter(city_coordinates(:, 1), city_coordinates(:, 2), 'filled', 'r');
title('TSP Solution');

请注意,上述代码中的遗传算法仅提供了一种解决TSP的方法。你可以根据自己的需求进行调整和扩展。

遗传算法解决旅行商问题:最短路径大于给定值的优化

原文地址: http://www.cveoy.top/t/topic/LZ1 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录