以下是使用 MapReduce 编程的解决方案:

Mapper 函数:

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] words = line.split(" ");

        for (String word : words) {
            this.word.set(word);
            context.write(this.word, one);
        }
    }
}

Reducer 函数:

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}

驱动程序:

public class WordCount {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(WordCountMapper.class);
        job.setCombinerClass(WordCountReducer.class);
        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

您可以在 Hadoop 集群上运行此代码,其中 args[0] 是输入文件的路径,args[1] 是输出文件的路径。在输出文件中,每行都会显示一个单词和它在文本中出现的次数。

使用 MapReduce 统计文本文件中单词出现次数

原文地址: http://www.cveoy.top/t/topic/J8b 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录