以下是使用 MapReduce 编程统计每个单词出现次数的示例代码:

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
  
  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{
    
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
      
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
  
  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();
    
    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }
  
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

要运行上述代码,你需要将其保存为 WordCount.java,并在 Hadoop 环境中进行编译和运行。假设你已经安装了 Hadoop 并配置了环境变量,可以按照以下步骤运行代码:

  1. 将文本文件复制到 Hadoop 的输入目录中(例如,将文本文件拷贝到 /input 目录下)。
  2. 使用以下命令将 Java 源代码编译为可执行的 JAR 文件:
    $ hadoop com.sun.tools.javac.Main WordCount.java
    $ jar cf wc.jar WordCount*.class
    
  3. 运行 MapReduce 作业:
    $ hadoop jar wc.jar WordCount /input /output
    
    其中,/input 是输入目录,/output 是输出目录。
  4. 查看输出文件:
    $ hadoop fs -cat /output/part-r-00000
    
    输出应该类似于示例的输出结果。

请注意,该示例假设你已经正确设置并配置了 Hadoop 环境,并且将文本文件复制到了正确的输入目录中。你可能需要根据你的实际环境进行适当的调整。

使用 MapReduce 统计文本文件中每个单词的出现次数

原文地址: http://www.cveoy.top/t/topic/J7H 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录