以下是修正后的代码:\n\npython\nimport matplotlib.pyplot as plt\n\ndef tcgf(pi_table):\n # 设置图表标题\n plt.title("停车高峰时间所占比例")\n \n # 设置x轴数据\n labels = ['0-3点', '3-6点', '6-9点', '9-12点', '12-15点', '15-18点', '18-21点', '21-00点']\n \n # 根据时间获取y轴数据\n kk0 = pi_table[pi_table['timein'].str.contains('00:')]\n kk1 = pi_table[pi_table['timein'].str.contains('01:')]\n kk2 = pi_table[pi_table['timein'].str.contains('02:')]\n kk3 = pi_table[pi_table['timein'].str.contains('03:')]\n kk4 = pi_table[pi_table['timein'].str.contains('04:')]\n kk5 = pi_table[pi_table['timein'].str.contains('05:')]\n kk6 = pi_table[pi_table['timein'].str.contains('06:')]\n kk7 = pi_table[pi_table['timein'].str.contains('07:')]\n kk8 = pi_table[pi_table['timein'].str.contains('08:')]\n kk9 = pi_table[pi_table['timein'].str.contains('09:')]\n kk10 = pi_table[pi_table['timein'].str.contains('10:')]\n kk11 = pi_table[pi_table['timein'].str.contains('11:')]\n kk12 = pi_table[pi_table['timein'].str.contains('12:')]\n kk13 = pi_table[pi_table['timein'].str.contains('13:')]\n kk14 = pi_table[pi_table['timein'].str.contains('14:')]\n kk15 = pi_table[pi_table['timein'].str.contains('15:')]\n kk16 = pi_table[pi_table['timein'].str.contains('16:')]\n kk17 = pi_table[pi_table['timein'].str.contains('17:')]\n kk18 = pi_table[pi_table['timein'].str.contains('18:')]\n kk19 = pi_table[pi_table['timein'].str.contains('19:')]\n kk20 = pi_table[pi_table['timein'].str.contains('20:')]\n kk21 = pi_table[pi_table['timein'].str.contains('21:')]\n kk22 = pi_table[pi_table['timein'].str.contains('22:')]\n kk23 = pi_table[pi_table['timein'].str.contains('23:')]\n \n # 统计时段内对应的停车数量\n # 设置数据信息\n x = [(len(kk0) + len(kk1) + len(kk2)), (len(kk3) + len(kk4) + len(kk5)),\n (len(kk6) + len(kk7) + len(kk8)), (len(kk9) + len(kk10) + len(kk11)),\n (len(kk12) + len(kk13) + len(kk14)), (len(kk15) + len(kk16) + len(kk17)),\n (len(kk18) + len(kk19) + len(kk20)), (len(kk21) + len(kk22) + len(kk23))]\n \n # 设置饼图,autopct保留1位小数\n plt.pie(x, labels=labels, autopct='%1.1f%%')\n plt.axis('equal') # 该行代码使饼图长宽相等\n plt.legend(loc="upper right", fontsize=10, bbox_to_anchor=(1.1, 1.05), borderaxespad=0.3) # 显示图例\n plt.show()\n\n\n请注意,你需要在代码开头导入matplotlib.pyplot模块。另外,你需要将每个时间段的停车数据部分替换为实际的数据获取逻辑。

停车高峰时间分析:饼图展示停车时间段占比

原文地址: https://www.cveoy.top/t/topic/mNc6 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录